Functional Form And Heterogeneity In Models For Count Data
Download Functional Form And Heterogeneity In Models For Count Data full books in PDF, epub, and Kindle. Read online free Functional Form And Heterogeneity In Models For Count Data ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : William Greene |
Publisher | : Now Publishers Inc |
Total Pages | : 120 |
Release | : 2007 |
Genre | : Business & Economics |
ISBN | : 160198054X |
This study presents several extensions of the most familiar models for count data, the Poisson and negative binomial models. We develop an encompassing model for two well-known variants of the negative binomial model (the NB1 and NB2 forms). We then analyze some alternative approaches to the standard log gamma model for introducing heterogeneity into the loglinear conditional means for these models. The lognormal model provides a versatile alternative specification that is more flexible (and more natural) than the log gamma form, and provides a platform for several "two part" extensions, including zero inflation, hurdle, and sample selection models. (We briefly present some alternative approaches to modeling heterogeneity.) We also resolve some features in Hausman, Hall and Griliches (1984, Economic models for count data with an application to the patents-R & D relationship, Econometrica 52, 909-938) widely used panel data treatments for the Poisson and negative binomial models that appear to conflict with more familiar models of fixed and random effects. Finally, we consider a bivariate Poisson model that is also based on the lognormal heterogeneity model. Two recent applications have used this model. We suggest that the correlation estimated in their model frameworks is an ambiguous measure of the correlation of the variables of interest, and may substantially overstate it. We conclude with a detailed application of the proposed methods using the data employed in one of the two aforementioned bivariate Poisson studies
Author | : Joseph M. Hilbe |
Publisher | : Cambridge University Press |
Total Pages | : 301 |
Release | : 2014-07-21 |
Genre | : Business & Economics |
ISBN | : 1107028337 |
This book provides guidelines and fully worked examples of how to select, construct, interpret and evaluate the full range of count models.
Author | : Rainer Winkelmann |
Publisher | : Springer Science & Business Media |
Total Pages | : 223 |
Release | : 2013-11-11 |
Genre | : Business & Economics |
ISBN | : 366221735X |
This book presents statistical methods for the analysis of events. The primary focus is on single equation cross section models. The book addresses both the methodology and the practice of the subject and it provides both a synthesis of a diverse body of literature that hitherto was available largely in pieces, as well as a contribution to the progress of the methodology, establishing several new results and introducing new models. Starting from the standard Poisson regression model as a benchmark, the causes, symptoms and consequences of misspecification are worked out. Both parametric and semi-parametric alternatives are discussed. While semi-parametric models allow for robust interference, parametric models can identify features of the underlying data generation process.
Author | : Paul Roback |
Publisher | : CRC Press |
Total Pages | : 436 |
Release | : 2021-01-14 |
Genre | : Mathematics |
ISBN | : 1439885400 |
Beyond Multiple Linear Regression: Applied Generalized Linear Models and Multilevel Models in R is designed for undergraduate students who have successfully completed a multiple linear regression course, helping them develop an expanded modeling toolkit that includes non-normal responses and correlated structure. Even though there is no mathematical prerequisite, the authors still introduce fairly sophisticated topics such as likelihood theory, zero-inflated Poisson, and parametric bootstrapping in an intuitive and applied manner. The case studies and exercises feature real data and real research questions; thus, most of the data in the textbook comes from collaborative research conducted by the authors and their students, or from student projects. Every chapter features a variety of conceptual exercises, guided exercises, and open-ended exercises using real data. After working through this material, students will develop an expanded toolkit and a greater appreciation for the wider world of data and statistical modeling. A solutions manual for all exercises is available to qualified instructors at the book’s website at www.routledge.com, and data sets and Rmd files for all case studies and exercises are available at the authors’ GitHub repo (https://github.com/proback/BeyondMLR)
Author | : Marie Davidian |
Publisher | : Routledge |
Total Pages | : 360 |
Release | : 2017-11-01 |
Genre | : Mathematics |
ISBN | : 1351428152 |
Nonlinear measurement data arise in a wide variety of biological and biomedical applications, such as longitudinal clinical trials, studies of drug kinetics and growth, and the analysis of assay and laboratory data. Nonlinear Models for Repeated Measurement Data provides the first unified development of methods and models for data of this type, with a detailed treatment of inference for the nonlinear mixed effects and its extensions. A particular strength of the book is the inclusion of several detailed case studies from the areas of population pharmacokinetics and pharmacodynamics, immunoassay and bioassay development and the analysis of growth curves.
Author | : William H. Greene |
Publisher | : Cambridge University Press |
Total Pages | : 383 |
Release | : 2010-04-08 |
Genre | : Business & Economics |
ISBN | : 1139485954 |
It is increasingly common for analysts to seek out the opinions of individuals and organizations using attitudinal scales such as degree of satisfaction or importance attached to an issue. Examples include levels of obesity, seriousness of a health condition, attitudes towards service levels, opinions on products, voting intentions, and the degree of clarity of contracts. Ordered choice models provide a relevant methodology for capturing the sources of influence that explain the choice made amongst a set of ordered alternatives. The methods have evolved to a level of sophistication that can allow for heterogeneity in the threshold parameters, in the explanatory variables (through random parameters), and in the decomposition of the residual variance. This book brings together contributions in ordered choice modeling from a number of disciplines, synthesizing developments over the last fifty years, and suggests useful extensions to account for the wide range of sources of influence on choice.
Author | : Mathias Harrer |
Publisher | : CRC Press |
Total Pages | : 500 |
Release | : 2021-09-15 |
Genre | : Mathematics |
ISBN | : 1000435636 |
Doing Meta-Analysis with R: A Hands-On Guide serves as an accessible introduction on how meta-analyses can be conducted in R. Essential steps for meta-analysis are covered, including calculation and pooling of outcome measures, forest plots, heterogeneity diagnostics, subgroup analyses, meta-regression, methods to control for publication bias, risk of bias assessments and plotting tools. Advanced but highly relevant topics such as network meta-analysis, multi-three-level meta-analyses, Bayesian meta-analysis approaches and SEM meta-analysis are also covered. A companion R package, dmetar, is introduced at the beginning of the guide. It contains data sets and several helper functions for the meta and metafor package used in the guide. The programming and statistical background covered in the book are kept at a non-expert level, making the book widely accessible. Features • Contains two introductory chapters on how to set up an R environment and do basic imports/manipulations of meta-analysis data, including exercises • Describes statistical concepts clearly and concisely before applying them in R • Includes step-by-step guidance through the coding required to perform meta-analyses, and a companion R package for the book
Author | : Lang Wu |
Publisher | : CRC Press |
Total Pages | : 431 |
Release | : 2009-11-11 |
Genre | : Mathematics |
ISBN | : 9781420074086 |
Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.
Author | : Joseph M. Hilbe |
Publisher | : Cambridge University Press |
Total Pages | : 573 |
Release | : 2011-03-17 |
Genre | : Mathematics |
ISBN | : 1139500066 |
This second edition of Hilbe's Negative Binomial Regression is a substantial enhancement to the popular first edition. The only text devoted entirely to the negative binomial model and its many variations, nearly every model discussed in the literature is addressed. The theoretical and distributional background of each model is discussed, together with examples of their construction, application, interpretation and evaluation. Complete Stata and R codes are provided throughout the text, with additional code (plus SAS), derivations and data provided on the book's website. Written for the practising researcher, the text begins with an examination of risk and rate ratios, and of the estimating algorithms used to model count data. The book then gives an in-depth analysis of Poisson regression and an evaluation of the meaning and nature of overdispersion, followed by a comprehensive analysis of the negative binomial distribution and of its parameterizations into various models for evaluating count data.
Author | : Edward W. Frees |
Publisher | : Cambridge University Press |
Total Pages | : 492 |
Release | : 2004-08-16 |
Genre | : Business & Economics |
ISBN | : 9780521535380 |
An introduction to foundations and applications for quantitatively oriented graduate social-science students and individual researchers.