Fukaya Categories And Picard Lefschetz Theory
Download Fukaya Categories And Picard Lefschetz Theory full books in PDF, epub, and Kindle. Read online free Fukaya Categories And Picard Lefschetz Theory ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Paul Seidel |
Publisher | : European Mathematical Society |
Total Pages | : 340 |
Release | : 2008 |
Genre | : Mathematics |
ISBN | : 9783037190630 |
The central objects in the book are Lagrangian submanifolds and their invariants, such as Floer homology and its multiplicative structures, which together constitute the Fukaya category. The relevant aspects of pseudo-holomorphic curve theory are covered in some detail, and there is also a self-contained account of the necessary homological algebra. Generally, the emphasis is on simplicity rather than generality. The last part discusses applications to Lefschetz fibrations and contains many previously unpublished results. The book will be of interest to graduate students and researchers in symplectic geometry and mirror symmetry.
Author | : Robert Lipshitz |
Publisher | : American Mathematical Soc. |
Total Pages | : 294 |
Release | : 2018-08-09 |
Genre | : Mathematics |
ISBN | : 1470428881 |
The authors construct Heegaard Floer theory for 3-manifolds with connected boundary. The theory associates to an oriented, parametrized two-manifold a differential graded algebra. For a three-manifold with parametrized boundary, the invariant comes in two different versions, one of which (type D) is a module over the algebra and the other of which (type A) is an A∞ module. Both are well-defined up to chain homotopy equivalence. For a decomposition of a 3-manifold into two pieces, the A∞ tensor product of the type D module of one piece and the type A module from the other piece is ^HF of the glued manifold. As a special case of the construction, the authors specialize to the case of three-manifolds with torus boundary. This case can be used to give another proof of the surgery exact triangle for ^HF. The authors relate the bordered Floer homology of a three-manifold with torus boundary with the knot Floer homology of a filling.
Author | : Denis Auroux |
Publisher | : Birkhäuser |
Total Pages | : 368 |
Release | : 2017-07-27 |
Genre | : Mathematics |
ISBN | : 3319599399 |
This volume is a tribute to Maxim Kontsevich, one of the most original and influential mathematicians of our time. Maxim’s vision has inspired major developments in many areas of mathematics, ranging all the way from probability theory to motives over finite fields, and has brought forth a paradigm shift at the interface of modern geometry and mathematical physics. Many of his papers have opened completely new directions of research and led to the solutions of many classical problems. This book collects papers by leading experts currently engaged in research on topics close to Maxim’s heart. Contributors: S. Donaldson A. Goncharov D. Kaledin M. Kapranov A. Kapustin L. Katzarkov A. Noll P. Pandit S. Pimenov J. Ren P. Seidel C. Simpson Y. Soibelman R. Thorngren
Author | : Frédéric Bourgeois |
Publisher | : Springer Science & Business Media |
Total Pages | : 538 |
Release | : 2014-03-10 |
Genre | : Science |
ISBN | : 3319020366 |
Symplectic and contact geometry naturally emerged from the mathematical description of classical physics. The discovery of new rigidity phenomena and properties satisfied by these geometric structures launched a new research field worldwide. The intense activity of many European research groups in this field is reflected by the ESF Research Networking Programme "Contact And Symplectic Topology" (CAST). The lectures of the Summer School in Nantes (June 2011) and of the CAST Summer School in Budapest (July 2012) provide a nice panorama of many aspects of the present status of contact and symplectic topology. The notes of the minicourses offer a gentle introduction to topics which have developed in an amazing speed in the recent past. These topics include 3-dimensional and higher dimensional contact topology, Fukaya categories, asymptotically holomorphic methods in contact topology, bordered Floer homology, embedded contact homology, and flexibility results for Stein manifolds.
Author | : Ricardo Castano-Bernard |
Publisher | : Springer |
Total Pages | : 445 |
Release | : 2014-10-07 |
Genre | : Mathematics |
ISBN | : 3319065149 |
The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y. Soibelman (2000), who applied methods of non-archimedean geometry (in particular, tropical curves) to Homological Mirror Symmetry. In combination with the subsequent work of Mikhalkin on the “tropical” approach to Gromov-Witten theory and the work of Gross and Siebert, Tropical Geometry has now become a powerful tool. Homological Mirror Symmetry is the area of mathematics concentrated around several categorical equivalences connecting symplectic and holomorphic (or algebraic) geometry. The central ideas first appeared in the work of Maxim Kontsevich (1993). Roughly speaking, the subject can be approached in two ways: either one uses Lagrangian torus fibrations of Calabi-Yau manifolds (the so-called Strominger-Yau-Zaslow picture, further developed by Kontsevich and Soibelman) or one uses Lefschetz fibrations of symplectic manifolds (suggested by Kontsevich and further developed by Seidel). Tropical Geometry studies piecewise-linear objects which appear as “degenerations” of the corresponding algebro-geometric objects.
Author | : Raf Bocklandt |
Publisher | : Cambridge University Press |
Total Pages | : 403 |
Release | : 2021-08-19 |
Genre | : Mathematics |
ISBN | : 110848350X |
Introduction to homological mirror symmetry from the point of view of representation theory, suitable for graduate students.
Author | : Hiro Lee Tanaka |
Publisher | : Springer Nature |
Total Pages | : 84 |
Release | : 2020-12-14 |
Genre | : Science |
ISBN | : 3030611639 |
This book provides an informal and geodesic introduction to factorization homology, focusing on providing intuition through simple examples. Along the way, the reader is also introduced to modern ideas in homotopy theory and category theory, particularly as it relates to the use of infinity-categories. As with the original lectures, the text is meant to be a leisurely read suitable for advanced graduate students and interested researchers in topology and adjacent fields.
Author | : Kenji Fukaya |
Publisher | : American Mathematical Soc. |
Total Pages | : 426 |
Release | : 2010-06-21 |
Genre | : Mathematics |
ISBN | : 0821852507 |
This is a two-volume series research monograph on the general Lagrangian Floer theory and on the accompanying homological algebra of filtered $A_\infty$-algebras. This book provides the most important step towards a rigorous foundation of the Fukaya category in general context. In Volume I, general deformation theory of the Floer cohomology is developed in both algebraic and geometric contexts. An essentially self-contained homotopy theory of filtered $A_\infty$ algebras and $A_\infty$ bimodules and applications of their obstruction-deformation theory to the Lagrangian Floer theory are presented. Volume II contains detailed studies of two of the main points of the foundation of the theory: transversality and orientation. The study of transversality is based on the virtual fundamental chain techniques (the theory of Kuranishi structures and their multisections) and chain level intersection theories. A detailed analysis comparing the orientations of the moduli spaces and their fiber products is carried out. A self-contained account of the general theory of Kuranishi structures is also included in the appendix of this volume.
Author | : Yong-Geun Oh |
Publisher | : Cambridge University Press |
Total Pages | : 471 |
Release | : 2015-08-27 |
Genre | : Mathematics |
ISBN | : 1107109671 |
The second part of a two-volume set offering a systematic explanation of symplectic topology. This volume provides a comprehensive introduction to Hamiltonian and Lagrangian Floer theory.
Author | : Yong-Geun Oh |
Publisher | : Cambridge University Press |
Total Pages | : 421 |
Release | : 2015-08-27 |
Genre | : Mathematics |
ISBN | : 1316381145 |
Published in two volumes, this is the first book to provide a thorough and systematic explanation of symplectic topology, and the analytical details and techniques used in applying the machinery arising from Floer theory as a whole. Volume 1 covers the basic materials of Hamiltonian dynamics and symplectic geometry and the analytic foundations of Gromov's pseudoholomorphic curve theory. One novel aspect of this treatment is the uniform treatment of both closed and open cases and a complete proof of the boundary regularity theorem of weak solutions of pseudo-holomorphic curves with totally real boundary conditions. Volume 2 provides a comprehensive introduction to both Hamiltonian Floer theory and Lagrangian Floer theory. Symplectic Topology and Floer Homology is a comprehensive resource suitable for experts and newcomers alike.