Frontiers In Memristive Materials For Neuromorphic Processing Applications
Download Frontiers In Memristive Materials For Neuromorphic Processing Applications full books in PDF, epub, and Kindle. Read online free Frontiers In Memristive Materials For Neuromorphic Processing Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : National Academies of Sciences Engineering and Medicine |
Publisher | : |
Total Pages | : |
Release | : 2021-09-22 |
Genre | : |
ISBN | : 9780309683197 |
Current von Neumann style computing is energy inefficient and bandwidth limited as information is physically shuttled via electrons between processor, short term non-volatile memory, and long-term storage. Biologically inspired neuromorphic computing, with its inherent autonomous learning capabilities and much lower power requirements based on analog processing, is seen as an avenue for overcoming these limitations. The development of nanoelectronic memory resistors, or memristors, is essential to neuromorphic architectures as they allow logic-based elements for information processing to be combined directly with nonvolatile memory for efficient emulation of neurons and synapses found in the brain. Memristors are typically composed of a switchable material with nonlinear hysteretic behavior sandwiched between two conducting encoding elements. The design, dynamic control, scaling and fundamental understanding of these materials is essential for establishing memristive devices. To explore the state-of-the-art in the materials fundamentally underlying memristor technologies: their science, their mechanisms and their functional imperatives to realize neuromorphic computing machines, the National Academies of Sciences, Engineering, and Medicine's Board on Physics and Astronomy convened a workshop on February 28, 2020. This publication summarizes the presentation and discussion of the workshop.
Author | : National Academies of Sciences, Engineering, and Medicine (U.S.). Board on Physics and Astronomy |
Publisher | : |
Total Pages | : 103 |
Release | : 2021 |
Genre | : Memristors |
ISBN | : 9780309683203 |
Author | : Huanglong Li |
Publisher | : Frontiers Media SA |
Total Pages | : 203 |
Release | : 2022-02-21 |
Genre | : Science |
ISBN | : 2889744604 |
Author | : Alex James |
Publisher | : BoD – Books on Demand |
Total Pages | : 326 |
Release | : 2018-04-04 |
Genre | : Computers |
ISBN | : 9535139479 |
This book covers a range of models, circuits and systems built with memristor devices and networks in applications to neural networks. It is divided into three parts: (1) Devices, (2) Models and (3) Applications. The resistive switching property is an important aspect of the memristors, and there are several designs of this discussed in this book, such as in metal oxide/organic semiconductor nonvolatile memories, nanoscale switching and degradation of resistive random access memory and graphene oxide-based memristor. The modelling of the memristors is required to ensure that the devices can be put to use and improve emerging application. In this book, various memristor models are discussed, from a mathematical framework to implementations in SPICE and verilog, that will be useful for the practitioners and researchers to get a grounding on the topic. The applications of the memristor models in various neuromorphic networks are discussed covering various neural network models, implementations in A/D converter and hierarchical temporal memories.
Author | : Christos Volos |
Publisher | : Academic Press |
Total Pages | : 570 |
Release | : 2021-06-17 |
Genre | : Technology & Engineering |
ISBN | : 0128232021 |
Mem-elements for Neuromorphic Circuits with Artificial Intelligence Applications illustrates recent advances in the field of mem-elements (memristor, memcapacitor, meminductor) and their applications in nonlinear dynamical systems, computer science, analog and digital systems, and in neuromorphic circuits and artificial intelligence. The book is mainly devoted to recent results, critical aspects and perspectives of ongoing research on relevant topics, all involving networks of mem-elements devices in diverse applications. Sections contribute to the discussion of memristive materials and transport mechanisms, presenting various types of physical structures that can be fabricated to realize mem-elements in integrated circuits and device modeling. As the last decade has seen an increasing interest in recent advances in mem-elements and their applications in neuromorphic circuits and artificial intelligence, this book will attract researchers in various fields. - Covers a broad range of interdisciplinary topics between mathematics, circuits, realizations, and practical applications related to nonlinear dynamical systems, nanotechnology, analog and digital systems, computer science and artificial intelligence - Presents recent advances in the field of mem-elements (memristor, memcapacitor, meminductor) - Includes interesting applications of mem-elements in nonlinear dynamical systems, analog and digital systems, neuromorphic circuits, computer science and artificial intelligence
Author | : Qing Wan |
Publisher | : John Wiley & Sons |
Total Pages | : 258 |
Release | : 2022-05-16 |
Genre | : Technology & Engineering |
ISBN | : 3527349790 |
Explore the cutting-edge of neuromorphic technologies with applications in Artificial Intelligence In Neuromorphic Devices for Brain-Inspired Computing: Artificial Intelligence, Perception, and Robotics, a team of expert engineers delivers a comprehensive discussion of all aspects of neuromorphic electronics designed to assist researchers and professionals to understand and apply all manner of brain-inspired computing and perception technologies. The book covers both memristic and neuromorphic devices, including spintronic, multi-terminal, and neuromorphic perceptual applications. Summarizing recent progress made in five distinct configurations of brain-inspired computing, the authors explore this promising technology’s potential applications in two specific areas: neuromorphic computing systems and neuromorphic perceptual systems. The book also includes: A thorough introduction to two-terminal neuromorphic memristors, including memristive devices and resistive switching mechanisms Comprehensive explorations of spintronic neuromorphic devices and multi-terminal neuromorphic devices with cognitive behaviors Practical discussions of neuromorphic devices based on chalcogenide and organic materials In-depth examinations of neuromorphic computing and perceptual systems with emerging devices Perfect for materials scientists, biochemists, and electronics engineers, Neuromorphic Devices for Brain-Inspired Computing: Artificial Intelligence, Perception, and Robotics will also earn a place in the libraries of neurochemists, neurobiologists, and neurophysiologists.
Author | : Paul R. Prucnal |
Publisher | : CRC Press |
Total Pages | : 412 |
Release | : 2017-05-08 |
Genre | : Science |
ISBN | : 1498725244 |
This book sets out to build bridges between the domains of photonic device physics and neural networks, providing a comprehensive overview of the emerging field of "neuromorphic photonics." It includes a thorough discussion of evolution of neuromorphic photonics from the advent of fiber-optic neurons to today’s state-of-the-art integrated laser neurons, which are a current focus of international research. Neuromorphic Photonics explores candidate interconnection architectures and devices for integrated neuromorphic networks, along with key functionality such as learning. It is written at a level accessible to graduate students, while also intending to serve as a comprehensive reference for experts in the field.
Author | : Calin Ciufudean |
Publisher | : BoD – Books on Demand |
Total Pages | : 126 |
Release | : 2018-10-03 |
Genre | : Mathematics |
ISBN | : 1789841151 |
Nowadays, scientific research deals with alternative solutions for creating non-traditional computing systems, such as neural network architectures where the stochastic nature and live dynamics of memristive models play a key role. The features of memristors make it possible to direct processing and analysis of both biosystems and systems driven by artificial intelligence, as well as develop plausible physical models of spiking neural networks with self-organization. This book deals with advanced applications illustrating these concepts, and delivers an important contribution for the achievement of the next generation of intelligent hybrid biostructures. Different modeling and simulation tools can deliver an alternative to funding the theoretical approach as well as practical implementation of memristive systems.
Author | : Andrew Adamatzky |
Publisher | : Springer Science & Business Media |
Total Pages | : 716 |
Release | : 2013-12-18 |
Genre | : Computers |
ISBN | : 3319026305 |
Using memristors one can achieve circuit functionalities that are not possible to establish with resistors, capacitors and inductors, therefore the memristor is of great pragmatic usefulness. Potential unique applications of memristors are in spintronic devices, ultra-dense information storage, neuromorphic circuits and programmable electronics. Memristor Networks focuses on the design, fabrication, modelling of and implementation of computation in spatially extended discrete media with many memristors. Top experts in computer science, mathematics, electronics, physics and computer engineering present foundations of the memristor theory and applications, demonstrate how to design neuromorphic network architectures based on memristor assembles, analyse varieties of the dynamic behaviour of memristive networks and show how to realise computing devices from memristors. All aspects of memristor networks are presented in detail, in a fully accessible style. An indispensable source of information and an inspiring reference text, Memristor Networks is an invaluable resource for future generations of computer scientists, mathematicians, physicists and engineers.
Author | : Christian Mayr |
Publisher | : Frontiers Media SA |
Total Pages | : 178 |
Release | : 2016-06-26 |
Genre | : Neurosciences. Biological psychiatry. Neuropsychiatry |
ISBN | : 2889198774 |
One of the most striking properties of biological systems is their ability to learn and adapt to ever changing environmental conditions, tasks and stimuli. It emerges from a number of different forms of plasticity, that change the properties of the computing substrate, mainly acting on the modification of the strength of synaptic connections that gate the flow of information across neurons. Plasticity is an essential ingredient for building artificial autonomous cognitive agents that can learn to reliably and meaningfully interact with the real world. For this reason, the neuromorphic community at large has put substantial effort in the design of different forms of plasticity and in putting them to practical use. These plasticity forms comprise, among others, Short Term Depression and Facilitation, Homeostasis, Spike Frequency Adaptation and diverse forms of Hebbian learning (e.g. Spike Timing Dependent Plasticity). This special research topic collects the most advanced developments in the design of the diverse forms of plasticity, from the single circuit to the system level, as well as their exploitation in the implementation of cognitive systems.