From Dimension Free Matrix Theory To Cross Dimensional Dynamic Systems
Download From Dimension Free Matrix Theory To Cross Dimensional Dynamic Systems full books in PDF, epub, and Kindle. Read online free From Dimension Free Matrix Theory To Cross Dimensional Dynamic Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Daizhan Cheng |
Publisher | : Academic Press |
Total Pages | : 366 |
Release | : 2019-05-18 |
Genre | : Mathematics |
ISBN | : 0128178027 |
From Dimension-Free Matrix Theory to Cross-Dimensional Dynamic Systems illuminates the underlying mathematics of semi-tensor product (STP), a generalized matrix product that extends the conventional matrix product to two matrices of arbitrary dimensions. Dimension-varying systems feature prominently across many disciplines, and through innovative applications its newly developed theory can revolutionize large data systems such as genomics and biosystems, deep learning, IT, and information-based engineering applications. - Provides, for the first time, cross-dimensional system theory that is useful for modeling dimension-varying systems. - Offers potential applications to the analysis and control of new dimension-varying systems. - Investigates the underlying mathematics of semi-tensor product, including the equivalence and lattice structure of matrices and monoid of matrices with arbitrary dimensions.
Author | : Mohammad Sal Moslehian |
Publisher | : Springer Nature |
Total Pages | : 763 |
Release | : 2023-07-29 |
Genre | : Mathematics |
ISBN | : 3031253868 |
This book concerns matrix and operator equations that are widely applied in various disciplines of science to formulate challenging problems and solve them in a faithful way. The main aim of this contributed book is to study several important matrix and operator equalities and equations in a systematic and self-contained fashion. Some powerful methods have been used to investigate some significant equations in functional analysis, operator theory, matrix analysis, and numerous subjects in the last decades. The book is divided into two parts: (I) Matrix Equations and (II) Operator Equations. In the first part, the state-of-the-art of systems of matrix equations is given and generalized inverses are used to find their solutions. The semi-tensor product of matrices is used to solve quaternion matrix equations. The contents of some chapters are related to the relationship between matrix inequalities, matrix means, numerical range, and matrix equations. In addition, quaternion algebras and their applications are employed in solving some famous matrix equations like Sylvester, Stein, and Lyapunov equations. A chapter devoted to studying Hermitian polynomial matrix equations, which frequently arise from linear-quadratic control problems. Moreover, some classical and recently discovered inequalities for matrix exponentials are reviewed. In the second part, the latest developments in solving several equations appearing in modern operator theory are demonstrated. These are of interest to a wide audience of pure and applied mathematicians. For example, the Daugavet equation in the linear and nonlinear setting, iterative processes and Volterra-Fredholm integral equations, semicircular elements induced by connected finite graphs, free probability, singular integral operators with shifts, and operator differential equations closely related to the properties of the coefficient operators in some equations are discussed. The chapters give a comprehensive account of their subjects. The exhibited chapters are written in a reader-friendly style and can be read independently. Each chapter contains a rich bibliography. This book is intended for use by both researchers and graduate students of mathematics, physics, and engineering.
Author | : László Erdős |
Publisher | : American Mathematical Soc. |
Total Pages | : 239 |
Release | : 2017-08-30 |
Genre | : Mathematics |
ISBN | : 1470436485 |
A co-publication of the AMS and the Courant Institute of Mathematical Sciences at New York University This book is a concise and self-contained introduction of recent techniques to prove local spectral universality for large random matrices. Random matrix theory is a fast expanding research area, and this book mainly focuses on the methods that the authors participated in developing over the past few years. Many other interesting topics are not included, and neither are several new developments within the framework of these methods. The authors have chosen instead to present key concepts that they believe are the core of these methods and should be relevant for future applications. They keep technicalities to a minimum to make the book accessible to graduate students. With this in mind, they include in this book the basic notions and tools for high-dimensional analysis, such as large deviation, entropy, Dirichlet form, and the logarithmic Sobolev inequality. This manuscript has been developed and continuously improved over the last five years. The authors have taught this material in several regular graduate courses at Harvard, Munich, and Vienna, in addition to various summer schools and short courses. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.
Author | : Steven H. Strogatz |
Publisher | : CRC Press |
Total Pages | : 532 |
Release | : 2018-05-04 |
Genre | : Mathematics |
ISBN | : 0429961111 |
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Author | : Cornelius T. Leondes |
Publisher | : Routledge |
Total Pages | : 335 |
Release | : 2021-09-01 |
Genre | : Mathematics |
ISBN | : 1351413244 |
The finite element, an approximation method for solving differential equations of mathematical physics, is a highly effective technique in the analysis and design, or synthesis, of structural dynamic systems. Starting from the system differential equations and its boundary conditions, what is referred to as a weak form of the problem (elaborated in the text) is developed in a variational sense. This variational statement is used to define elemental properties that may be written as matrices and vectors as well as to identify primary and secondary boundaries and all possible boundary conditions. Specific equilibrium problems are also solved. This book clearly reveals the effectiveness and great significance of the finite element method available and the essential role it will play in the future as further development occurs.
Author | : |
Publisher | : |
Total Pages | : 1102 |
Release | : 1976 |
Genre | : Aeronautics |
ISBN | : |
Author | : Jan Machowski |
Publisher | : John Wiley & Sons |
Total Pages | : 488 |
Release | : 1997-10-20 |
Genre | : Science |
ISBN | : 9780471956433 |
As the demand for electrical power increases, power systems are being operated closer to their stability limits than ever before. This text focuses on explaining and analysing the dynamic performance of such systems which is important for both system operation and planning. Placing emphasis on understanding the underlying physical principles, the book opens with an exploration of basic concepts using simple mathematical models. Building on these firm foundations the authors proceed to more complex models and algorithms. Features include: * Progressive approach from simplicity to complexity. * Detailed description of slow and fast dynamics. * Examination of the influence of automatic control on power system dynamics. * Stability enhancement including the use of PSS and Facts. * Advanced models and algorithms for power system stability analysis. Senior undergraduate, postgraduate and research students studying power systems will appreciate the authors' accessible approach. Also for electric utility engineers, this valuable resource examines power system dynamics and stability from both a mathematical and engineering viewpoint.
Author | : Arjan J. van der Schaft |
Publisher | : Springer |
Total Pages | : 189 |
Release | : 2007-10-03 |
Genre | : Technology & Engineering |
ISBN | : 1846285429 |
This book is about dynamical systems that are "hybrid" in the sense that they contain both continuous and discrete state variables. Recently there has been increased research interest in the study of the interaction between discrete and continuous dynamics. The present volume provides a first attempt in book form to bring together concepts and methods dealing with hybrid systems from various areas, and to look at these from a unified perspective. The authors have chosen a mode of exposition that is largely based on illustrative examples rather than on the abstract theorem-proof format because the systematic study of hybrid systems is still in its infancy. The examples are taken from many different application areas, ranging from power converters to communication protocols and from chaos to mathematical finance. Subjects covered include the following: definition of hybrid systems; description formats; existence and uniqueness of solutions; special subclasses (variable-structure systems, complementarity systems); reachability and verification; stability and stabilizability; control design methods. The book will be of interest to scientists from a wide range of disciplines including: computer science, control theory, dynamical system theory, systems modeling and simulation, and operations research.
Author | : |
Publisher | : |
Total Pages | : 760 |
Release | : 1974 |
Genre | : Aeronautics |
ISBN | : |
Author | : Karl Johan Åström |
Publisher | : Princeton University Press |
Total Pages | : |
Release | : 2021-02-02 |
Genre | : Technology & Engineering |
ISBN | : 069121347X |
The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory