Free Lattices
Download Free Lattices full books in PDF, epub, and Kindle. Read online free Free Lattices ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Ralph S. Freese |
Publisher | : American Mathematical Soc. |
Total Pages | : 304 |
Release | : 1995 |
Genre | : Mathematics |
ISBN | : 0821803891 |
A thorough treatment of free lattices, including such aspects as Whitman's solution to the word problem, bounded monomorphisms and related concepts, totally atomic elements, infinite intervals, computation, term rewrite systems, and varieties. Includes several results that are new or have not been previously published. Annotation copyright by Book News, Inc., Portland, OR
Author | : B. A. Davey |
Publisher | : Cambridge University Press |
Total Pages | : 316 |
Release | : 2002-04-18 |
Genre | : Mathematics |
ISBN | : 1107717523 |
This new edition of Introduction to Lattices and Order presents a radical reorganization and updating, though its primary aim is unchanged. The explosive development of theoretical computer science in recent years has, in particular, influenced the book's evolution: a fresh treatment of fixpoints testifies to this and Galois connections now feature prominently. An early presentation of concept analysis gives both a concrete foundation for the subsequent theory of complete lattices and a glimpse of a methodology for data analysis that is of commercial value in social science. Classroom experience has led to numerous pedagogical improvements and many new exercises have been added. As before, exposure to elementary abstract algebra and the notation of set theory are the only prerequisites, making the book suitable for advanced undergraduates and beginning graduate students. It will also be a valuable resource for anyone who meets ordered structures.
Author | : |
Publisher | : American Mathematical Soc. |
Total Pages | : 262 |
Release | : |
Genre | : Mathematics |
ISBN | : 9780821895887 |
This indispensable reference source contains a wealth of information on lattice theory. The book presents a survey of virtually everything published in the fields of partially ordered sets, semilattices, lattices, and Boolean algebras that was reviewed in Referativnyi Zhurnal Matematika from mid-1982 to the end of 1985. A continuation of a previous volume (the English translation of which was published by the AMS in 1989, as volume 141 in Translations - Series 2), this comprehensive work contains more than 2200 references. Many of the papers covered here were originally published in virtually inaccessible places. The compilation of the volume was directed by Milan Kolibiar of Comenius University at Bratislava and Lev A. Skornyakov of Moscow University. Of interest to mathematicians, as well as to philosophers and computer scientists in certain areas, this unique compendium is a must for any mathematical library.
Author | : Steven Roman |
Publisher | : Springer Science & Business Media |
Total Pages | : 307 |
Release | : 2008-12-15 |
Genre | : Mathematics |
ISBN | : 0387789014 |
This book is intended to be a thorough introduction to the subject of order and lattices, with an emphasis on the latter. It can be used for a course at the graduate or advanced undergraduate level or for independent study. Prerequisites are kept to a minimum, but an introductory course in abstract algebra is highly recommended, since many of the examples are drawn from this area. This is a book on pure mathematics: I do not discuss the applications of lattice theory to physics, computer science or other disciplines. Lattice theory began in the early 1890s, when Richard Dedekind wanted to know the answer to the following question: Given three subgroups EF , and G of an abelian group K, what is the largest number of distinct subgroups that can be formed using these subgroups and the operations of intersection and sum (join), as in E?FßÐE?FÑ?GßE?ÐF?GÑ and so on? In lattice-theoretic terms, this is the number of elements in the relatively free modular lattice on three generators. Dedekind [15] answered this question (the answer is #)) and wrote two papers on the subject of lattice theory, but then the subject lay relatively dormant until Garrett Birkhoff, Oystein Ore and others picked it up in the 1930s. Since then, many noted mathematicians have contributed to the subject, including Garrett Birkhoff, Richard Dedekind, Israel Gelfand, George Grätzer, Aleksandr Kurosh, Anatoly Malcev, Oystein Ore, Gian-Carlo Rota, Alfred Tarski and Johnny von Neumann.
Author | : George Grätzer |
Publisher | : Springer Science & Business Media |
Total Pages | : 688 |
Release | : 2002-11-21 |
Genre | : Mathematics |
ISBN | : 9783764369965 |
"Grätzer’s 'General Lattice Theory' has become the lattice theorist’s bible. Now we have the second edition, in which the old testament is augmented by a new testament. The new testament gospel is provided by leading and acknowledged experts in their fields. This is an excellent and engaging second edition that will long remain a standard reference." --MATHEMATICAL REVIEWS
Author | : J.H. Conway |
Publisher | : Springer Science & Business Media |
Total Pages | : 724 |
Release | : 2013-03-09 |
Genre | : Mathematics |
ISBN | : 1475722494 |
The second edition of this timely, definitive, and popular book continues to pursue the question: what is the most efficient way to pack a large number of equal spheres in n-dimensional Euclidean space? The authors also continue to examine related problems such as the kissing number problem, the covering problem, the quantizing problem, and the classification of lattices and quadratic forms. Like the first edition, the second edition describes the applications of these questions to other areas of mathematics and science such as number theory, coding theory, group theory, analog-to-digital conversion and data compression, n-dimensional crystallography, and dual theory and superstring theory in physics. Results as of 1992 have been added to the text, and the extensive bibliography - itself a contribution to the field - is supplemented with approximately 450 new entries.
Author | : Peter Jipsen |
Publisher | : Springer |
Total Pages | : 171 |
Release | : 2006-11-15 |
Genre | : Mathematics |
ISBN | : 3540475141 |
The study of lattice varieties is a field that has experienced rapid growth in the last 30 years, but many of the interesting and deep results discovered in that period have so far only appeared in research papers. The aim of this monograph is to present the main results about modular and nonmodular varieties, equational bases and the amalgamation property in a uniform way. The first chapter covers preliminaries that make the material accessible to anyone who has had an introductory course in universal algebra. Each subsequent chapter begins with a short historical introduction which sites the original references and then presents the results with complete proofs (in nearly all cases). Numerous diagrams illustrate the beauty of lattice theory and aid in the visualization of many proofs. An extensive index and bibliography also make the monograph a useful reference work.
Author | : Sacha Friedli |
Publisher | : Cambridge University Press |
Total Pages | : 643 |
Release | : 2017-11-23 |
Genre | : Mathematics |
ISBN | : 1107184827 |
A self-contained, mathematical introduction to the driving ideas in equilibrium statistical mechanics, studying important models in detail.
Author | : Jorge Almeida |
Publisher | : Springer Science & Business Media |
Total Pages | : 325 |
Release | : 2013-11-11 |
Genre | : Mathematics |
ISBN | : 1489926089 |
This volume contains papers which, for the most part, are based on talks given at an international conference on Lattices, Semigroups, and Universal Algebra that was held in Lisbon, Portugal during the week of June 20-24, 1988. The conference was dedicated to the memory of Professor Antonio Almeida Costa, a Portuguese mathematician who greatly contributed to the development of th algebra in Portugal, on the 10 anniversary of his death. The themes of the conference reflect some of his research interests and those of his students. The purpose of the conference was to gather leading experts in Lattices, Semigroups, and Universal Algebra and to promote a discussion of recent developments and trends in these areas. All three fields have grown rapidly during the last few decades with varying degrees of interaction. Lattice theory and Universal Algebra have historically evolved alongside with a large overlap between the groups of researchers in the two fields. More recently, techniques and ideas of these theories have been used extensively in the theory of semigroups. Conversely, some developments in that area may inspire further developments in Universal Algebra. On the other hand, techniques of semi group theory have naturally been employed in the study of semilattices. Several papers in this volume elaborate on these interactions.
Author | : George Gratzer |
Publisher | : Courier Corporation |
Total Pages | : 242 |
Release | : 2009-01-01 |
Genre | : Mathematics |
ISBN | : 048647173X |
This outstanding text is written in clear language and enhanced with many exercises, diagrams, and proofs. It discusses historical developments and future directions and provides an extensive bibliography and references. 1971 edition.