Free Boundary Problems Theory And Applications
Download Free Boundary Problems Theory And Applications full books in PDF, epub, and Kindle. Read online free Free Boundary Problems Theory And Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Pierluigi Colli |
Publisher | : Birkhäuser |
Total Pages | : 342 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3034878931 |
Many phenomena of interest for applications are represented by differential equations which are defined in a domain whose boundary is a priori unknown, and is accordingly named a "free boundary". A further quantitative condition is then provided in order to exclude indeterminacy. Free boundary problems thus encompass a broad spectrum which is represented in this state-of-the-art volume by a variety of contributions of researchers in mathematics and applied fields like physics, biology and material sciences. Special emphasis has been reserved for mathematical modelling and for the formulation of new problems.
Author | : Ioannis Athanasopoulos |
Publisher | : CRC Press |
Total Pages | : 372 |
Release | : 1999-06-25 |
Genre | : Mathematics |
ISBN | : 9781584880189 |
Free boundary problems arise in an enormous number of situations in nature and technology. They hold a strategic position in pure and applied sciences and thus have been the focus of considerable research over the last three decades. Free Boundary Problems: Theory and Applications presents the work and results of experts at the forefront of current research in mathematics, material sciences, chemical engineering, biology, and physics. It contains the plenary lectures and contributed papers of the 1997 International Interdisciplinary Congress proceedings held in Crete. The main topics addressed include free boundary problems in fluid and solid mechanics, combustion, the theory of filtration, and glaciology. Contributors also discuss material science modeling, recent mathematical developments, and numerical analysis advances within their presentations of more specific topics, such as singularities of interfaces, cusp cavitation and fracture, capillary fluid dynamics of film coating, dynamics of surface growth, phase transition kinetics, and phase field models. With the implications of free boundary problems so far reaching, it becomes important for researchers from all of these fields to stay abreast of new developments. Free Boundary Problems: Theory and Applications provides the opportunity to do just that, presenting recent advances from more than 50 researchers at the frontiers of science, mathematics, and technology.
Author | : Luis A. Caffarelli |
Publisher | : American Mathematical Soc. |
Total Pages | : 282 |
Release | : 2005 |
Genre | : Mathematics |
ISBN | : 0821837842 |
We hope that the tools and ideas presented here will serve as a basis for the study of more complex phenomena and problems."--Jacket.
Author | : S.N. Antontsev |
Publisher | : Springer Science & Business Media |
Total Pages | : 338 |
Release | : 2012-12-06 |
Genre | : Technology & Engineering |
ISBN | : 1461200911 |
For the past several decades, the study of free boundary problems has been a very active subject of research occurring in a variety of applied sciences. What these problems have in common is their formulation in terms of suitably posed initial and boundary value problems for nonlinear partial differential equations. Such problems arise, for example, in the mathematical treatment of the processes of heat conduction, filtration through porous media, flows of non-Newtonian fluids, boundary layers, chemical reactions, semiconductors, and so on. The growing interest in these problems is reflected by the series of meetings held under the title "Free Boundary Problems: Theory and Applications" (Ox ford 1974, Pavia 1979, Durham 1978, Montecatini 1981, Maubuisson 1984, Irsee 1987, Montreal 1990, Toledo 1993, Zakopane 1995, Crete 1997, Chiba 1999). From the proceedings of these meetings, we can learn about the different kinds of mathematical areas that fall within the scope of free boundary problems. It is worth mentioning that the European Science Foundation supported a vast research project on free boundary problems from 1993 until 1999. The recent creation of the specialized journal Interfaces and Free Boundaries: Modeling, Analysis and Computation gives us an idea of the vitality of the subject and its present state of development. This book is a result of collaboration among the authors over the last 15 years.
Author | : Marek Niezgodka |
Publisher | : CRC Press |
Total Pages | : 462 |
Release | : 1996-11-25 |
Genre | : Mathematics |
ISBN | : 9780582305939 |
Addressing various aspects of nonlinear partial differential equations, this volume contains papers and lectures presented at the Congress on Free boundary Problems, Theory and Application held in Zakopane, Poland in 1995. Topics include existence, uniqueness, asymptotic behavior, and regularity of solutions and interfaces.
Author | : Guido De Philippis |
Publisher | : Springer Nature |
Total Pages | : 138 |
Release | : 2021-03-23 |
Genre | : Mathematics |
ISBN | : 303065799X |
This volume covers contemporary aspects of geometric measure theory with a focus on applications to partial differential equations, free boundary problems and water waves. It is based on lectures given at the 2019 CIME summer school “Geometric Measure Theory and Applications – From Geometric Analysis to Free Boundary Problems” which took place in Cetraro, Italy, under the scientific direction of Matteo Focardi and Emanuele Spadaro. Providing a description of the structure of measures satisfying certain differential constraints, and covering regularity theory for Bernoulli type free boundary problems and water waves as well as regularity theory for the obstacle problems and the developments leading to applications to the Stefan problem, this volume will be of interest to students and researchers in mathematical analysis and its applications.
Author | : Darya Apushkinskaya |
Publisher | : Springer |
Total Pages | : 156 |
Release | : 2018-09-20 |
Genre | : Mathematics |
ISBN | : 3319970798 |
This book is concerned with several elliptic and parabolic obstacle-type problems with a focus on the cases where the free and fixed boundaries meet. The results presented complement those found in existing books in the subject, which mainly treat regularity properties away from the fixed boundary. The topics include optimal regularity, analysis of global solutions, tangential touch of the free and fixed boundaries, as well as Lipschitz- and $C^1$-regularity of the free boundary. Special attention is given to local versions of various monotonicity formulas. The intended audience includes research mathematicians and advanced graduate students interested in problems with free boundaries.
Author | : Avner Friedman |
Publisher | : |
Total Pages | : 728 |
Release | : 1988 |
Genre | : Mathematics |
ISBN | : |
This advanced graduate-level text examines variational methods in partial differential equations and illustrates their applications to a number of free-boundary problems. Detailed statements of the standard theory of elliptic and parabolic operators make this treatment readable for engineers, students, and nonspecialists alike. The text's first two chapters can be used for a single-semester graduate course in variational inequalities or partial differential equations. The succeeding chapters -- covering jets and cavities, variational problems with potentials, and free-boundary problems not in variational form -- are more specialized and self-contained. Readers who have mastered chapters 1 and 2 will be able to conduct research on the problems explored in subsequent chapters. Bibliographic remarks conclude each chapter, along with several problems and exercises.
Author | : N. I. Muskhelishvili |
Publisher | : Courier Corporation |
Total Pages | : 466 |
Release | : 2013-02-19 |
Genre | : Mathematics |
ISBN | : 0486145069 |
DIVHigh-level treatment of one-dimensional singular integral equations covers Holder Condition, Hilbert and Riemann-Hilbert problems, Dirichlet problem, more. 1953 edition. /div
Author | : Jacques Louis Lions |
Publisher | : Springer Science & Business Media |
Total Pages | : 375 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3642651615 |
1. We describe, at first in a very formaI manner, our essential aim. n Let m be an op en subset of R , with boundary am. In m and on am we introduce, respectively, linear differential operators P and Qj' 0 ~ i ~ 'V. By "non-homogeneous boundary value problem" we mean a problem of the following type: let f and gj' 0 ~ i ~ 'v, be given in function space s F and G , F being a space" on m" and the G/ s spaces" on am" ; j we seek u in a function space u/t "on m" satisfying (1) Pu = f in m, (2) Qju = gj on am, 0 ~ i ~ 'v«])). Qj may be identically zero on part of am, so that the number of boundary conditions may depend on the part of am considered 2. We take as "working hypothesis" that, for fEF and gjEG , j the problem (1), (2) admits a unique solution u E U/t, which depends 3 continuously on the data . But for alllinear probIems, there is a large number of choiees for the space s u/t and {F; G} (naturally linke d together). j Generally speaking, our aim is to determine families of spaces 'ft and {F; G}, associated in a "natural" way with problem (1), (2) and con j venient for applications, and also all possible choiees for u/t and {F; G} j in these families.