Framework For Biometric Match Score Fusion Using Statistical And Belief Models
Download Framework For Biometric Match Score Fusion Using Statistical And Belief Models full books in PDF, epub, and Kindle. Read online free Framework For Biometric Match Score Fusion Using Statistical And Belief Models ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Mayank Vatsa |
Publisher | : Infinite Study |
Total Pages | : 16 |
Release | : |
Genre | : |
ISBN | : |
This chapter presents a framework for multi-biometric match score fusion when non-ideal conditions cause conflict in the results of different unimodal biometrics classifiers. The proposed framework uses belief function theory to effectively fuse the match scores and density estimation technique to compute the belief assignments.
Author | : Florentin Smarandache |
Publisher | : Infinite Study |
Total Pages | : 760 |
Release | : 2004 |
Genre | : Science |
ISBN | : 1599730731 |
This volume has about 760 pages, split into 25 chapters, from 41 contributors. First part of this book presents advances of Dezert-Smarandache Theory (DSmT) which is becoming one of the most comprehensive and flexible fusion theory based on belief functions. It can work in all fusion spaces: power set, hyper-power set, and super-power set, and has various fusion and conditioning rules that can be applied depending on each application. Some new generalized rules are introduced in this volume with codes for implementing some of them. For the qualitative fusion, the DSm Field and Linear Algebra of Refined Labels (FLARL) is proposed which can convert any numerical fusion rule to a qualitative fusion rule. When one needs to work on a refined frame of discernment, the refinement is done using Smarandache¿s algebraic codification. New interpretations and implementations of the fusion rules based on sampling techniques and referee functions are proposed, including the probabilistic proportional conflict redistribution rule. A new probabilistic transformation of mass of belief is also presented which outperforms the classical pignistic transformation in term of probabilistic information content. The second part of the book presents applications of DSmT in target tracking, in satellite image fusion, in snow-avalanche risk assessment, in multi-biometric match score fusion, in assessment of an attribute information retrieved based on the sensor data or human originated information, in sensor management, in automatic goal allocation for a planetary rover, in computer-aided medical diagnosis, in multiple camera fusion for tracking objects on ground plane, in object identification, in fusion of Electronic Support Measures allegiance report, in map regenerating forest stands, etc.
Author | : Mayank Vatsa |
Publisher | : Infinite Study |
Total Pages | : 12 |
Release | : |
Genre | : |
ISBN | : |
This paper formulates an evidence-theoretic multimodal unification approach using belief functions that takes into account the variability in biometric image characteristics. While processing non-ideal images the variation in the quality of features at different levels of abstraction may cause individual classifiers to generate conflicting genuine-impostor decisions. Existing fusion approaches are non-adaptive and do not always guarantee optimum performance improvements.
Author | : James L. Wayman |
Publisher | : Springer Science & Business Media |
Total Pages | : 380 |
Release | : 2005-09-20 |
Genre | : Computers |
ISBN | : 1846280648 |
Biometric Systems provides practitioners with an overview of the principles and methods needed to build reliable biometric systems. It covers three main topics: key biometric technologies, design and management issues, and the performance evaluation of biometric systems for personal verification/identification. The four most widely used technologies are focused on - speech, fingerprint, iris and face recognition. Key features include: in-depth coverage of the technical and practical obstacles which are often neglected by application developers and system integrators and which result in shortfalls between expected and actual performance; and protocols and benchmarks which will allow developers to compare performance and track system improvements.
Author | : N. V. Boulgouris |
Publisher | : John Wiley & Sons |
Total Pages | : 763 |
Release | : 2009-10-29 |
Genre | : Computers |
ISBN | : 0470522348 |
Edited by a panel of experts, this book fills a gap in the existing literature by comprehensively covering system, processing, and application aspects of biometrics, based on a wide variety of biometric traits. The book provides an extensive survey of biometrics theory, methods,and applications, making it an indispensable source of information for researchers, security experts, policy makers, engineers, practitioners, and graduate students. The book's wide and in-depth coverage of biometrics enables readers to build a strong, fundamental understanding of theory and methods, and provides a foundation for solutions to many of today’s most interesting and challenging biometric problems. Biometric traits covered: Face, Fingerprint, Iris, Gait, Hand Geometry, Signature, Electrocardiogram (ECG), Electroencephalogram (EEG), physiological biometrics. Theory, Methods and Applications covered: Multilinear Discriminant Analysis, Neural Networks for biometrics, classifier design, biometric fusion, Event-Related Potentials, person-specific characteristic feature selection, image and video-based face, recognition/verification, near-infrared face recognition, elastic graph matching, super-resolution of facial images, multimodal solutions, 3D approaches to biometrics, facial aging models for recognition, information theory approaches to biometrics, biologically-inspired methods, biometric encryption, decision-making support in biometric systems, privacy in biometrics.
Author | : Christian Rathgeb |
Publisher | : Springer Science & Business Media |
Total Pages | : 371 |
Release | : 2012-11-08 |
Genre | : Computers |
ISBN | : 1461455715 |
Iris Biometrics: From Segmentation to Template Security provides critical analysis, challenges and solutions on recent iris biometric research topics, including image segmentation, image compression, watermarking, advanced comparators, template protection and more. Open source software is also provided on a dedicated website which includes feature extraction, segmentation and matching schemes applied in this book to foster scientific exchange. Current state-of-the-art approaches accompanied by comprehensive experimental evaluations are presented as well. This book has been designed as a secondary text book or reference for researchers and advanced-level students in computer science and electrical engineering. Professionals working in this related field will also find this book useful as a reference.
Author | : Karthik Nandakumar |
Publisher | : |
Total Pages | : 506 |
Release | : 2008 |
Genre | : Biometric identification |
ISBN | : |
Multibiometric systems are gaining popularity because they are able to overcome limitations such as non-universality, noisy sensor data and susceptibility to spoof attacks common in unibiometric systems. We address two critical issues in the design of a multibiometric system, namely, fusion methodology and template security. We propose a fusion methodology based on the Neyman-Pearson theorem for combination of match scores provided by multiple biometric matchers. The likelihood ratio (LR) test used in the Neyman-Pearson theorem directly maximizes the genuine accept rate (GAR) at any desired false accept rate (FAR). We extend the likelihood ratio based fusion scheme to incorporate the quality of the biometric samples. The LR framework can be used for designing sequential multibiometric systems by constructing a binary decision tree classifier based on the marginal likelihood ratios of the individual matchers. The use of image quality information further improves the GAR to 90% at a FAR of 0:001%. Next, we show that the proposed likelihood ratio based fusion framework is also applicable to a multibiometric system operating in the identification mode. We investigate rank level fusion strategies and propose a hybrid scheme that utilizes both ranks and scores to perform fusion in the identification scenario. Fusion of multiple biometric sources requires storage of multiple templates for the same user corresponding to the individual biometric sources. Template security is an important issue because stolen biometric templates cannot be revoked. We propose a scheme for securing multibiometric templates as a single entity using the fuzzy vault framework. We have developed fully automatic implementa- tions of a ngerprint-based fuzzy vault that secures minutiae templates and an iris cryptosystem that secures iris code templates. We also demonstrate that a multibiometric vault achieves better recognition performance and higher security compared to a unibiometric vault.
Author | : Audun Jøsang |
Publisher | : Springer |
Total Pages | : 355 |
Release | : 2016-10-27 |
Genre | : Computers |
ISBN | : 3319423371 |
This is the first comprehensive treatment of subjective logic and all its operations. The author developed the approach, and in this book he first explains subjective opinions, opinion representation, and decision-making under vagueness and uncertainty, and he then offers a full definition of subjective logic, harmonising the key notations and formalisms, concluding with chapters on trust networks and subjective Bayesian networks, which when combined form general subjective networks. The author shows how real-world situations can be realistically modelled with regard to how situations are perceived, with conclusions that more correctly reflect the ignorance and uncertainties that result from partially uncertain input arguments. The book will help researchers and practitioners to advance, improve and apply subjective logic to build powerful artificial reasoning models and tools for solving real-world problems. A good grounding in discrete mathematics is a prerequisite.
Author | : National Research Council |
Publisher | : National Academies Press |
Total Pages | : 182 |
Release | : 2010-12-12 |
Genre | : Computers |
ISBN | : 0309142075 |
Biometric recognition-the automated recognition of individuals based on their behavioral and biological characteristic-is promoted as a way to help identify terrorists, provide better control of access to physical facilities and financial accounts, and increase the efficiency of access to services and their utilization. Biometric recognition has been applied to identification of criminals, patient tracking in medical informatics, and the personalization of social services, among other things. In spite of substantial effort, however, there remain unresolved questions about the effectiveness and management of systems for biometric recognition, as well as the appropriateness and societal impact of their use. Moreover, the general public has been exposed to biometrics largely as high-technology gadgets in spy thrillers or as fear-instilling instruments of state or corporate surveillance in speculative fiction. Now, as biometric technologies appear poised for broader use, increased concerns about national security and the tracking of individuals as they cross borders have caused passports, visas, and border-crossing records to be linked to biometric data. A focus on fighting insurgencies and terrorism has led to the military deployment of biometric tools to enable recognition of individuals as friend or foe. Commercially, finger-imaging sensors, whose cost and physical size have been reduced, now appear on many laptop personal computers, handheld devices, mobile phones, and other consumer devices. Biometric Recognition: Challenges and Opportunities addresses the issues surrounding broader implementation of this technology, making two main points: first, biometric recognition systems are incredibly complex, and need to be addressed as such. Second, biometric recognition is an inherently probabilistic endeavor. Consequently, even when the technology and the system in which it is embedded are behaving as designed, there is inevitable uncertainty and risk of error. This book elaborates on these themes in detail to provide policy makers, developers, and researchers a comprehensive assessment of biometric recognition that examines current capabilities, future possibilities, and the role of government in technology and system development.
Author | : Hani Hamdan |
Publisher | : |
Total Pages | : |
Release | : 2017-10-17 |
Genre | : |
ISBN | : 9781450352437 |
International Conference on Internet of Things and Machine Learning Oct 17, 2017-Oct 18, 2017 Liverpool, United Kingdom. You can view more information about this proceeding and all of ACM�s other published conference proceedings from the ACM Digital Library: http://www.acm.org/dl.