Fractional Differential Equations And Inclusions Classical And Advanced Topics
Download Fractional Differential Equations And Inclusions Classical And Advanced Topics full books in PDF, epub, and Kindle. Read online free Fractional Differential Equations And Inclusions Classical And Advanced Topics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Said Abbas |
Publisher | : World Scientific |
Total Pages | : 326 |
Release | : 2023-02-02 |
Genre | : Mathematics |
ISBN | : 981126127X |
This monograph is devoted to the existence and stability (Ulam-Hyers-Rassias stability and asymptotic stability) of solutions for various classes of functional differential equations or inclusions involving the Hadamard or Hilfer fractional derivative. Some equations present delay which may be finite, infinite, or state-dependent. Others are subject to impulsive effect which may be fixed or non-instantaneous.Readers will find the book self-contained and unified in presentation. It provides the necessary background material required to go further into the subject and explores the rich research literature in detail. Each chapter concludes with a section devoted to notes and bibliographical remarks and all abstract results are illustrated by examples. The tools used include many classical and modern nonlinear analysis methods such as fixed-point theorems, as well as some notions of Ulam stability, attractivity and the measure of non-compactness as well as the measure of weak noncompactness. It is useful for researchers and graduate students for research, seminars, and advanced graduate courses, in pure and applied mathematics, physics, mechanics, engineering, biology, and all other applied sciences.
Author | : Saïd Abbas |
Publisher | : Elsevier |
Total Pages | : 400 |
Release | : 2024-01-16 |
Genre | : Computers |
ISBN | : 044323602X |
The field of fractional calculus (FC) is more than 300 years old, and it presumably stemmed from a question about a fractional-order derivative raised in communication between L'Hopital and Leibniz in the year 1695. This branch of mathematical analysis is regarded as the generalization of classical calculus, as it deals with the derivative and integral operators of fractional order. The tools of fractional calculus are found to be of great utility in improving the mathematical modeling of many natural phenomena and processes occurring in the areas of engineering, social, natural, and biomedical sciences. Fractional Difference, Differential Equations, and Inclusions: Analysis and Stability is devoted to the existence and stability (Ulam-Hyers-Rassias stability and asymptotic stability) of solutions for several classes of functional fractional difference equations and inclusions. Some equations include delay effects of finite, infinite, or state-dependent nature. Others are subject to impulsive effect which may be fixed or non-instantaneous. The tools used to establish the existence results for the proposed problems include fixed point theorems, densifiability techniques, monotone iterative technique, notions of Ulam stability, attractivity and the measure of non-compactness as well as the measure of weak noncompactness. All the abstract results are illustrated by examples in applied mathematics, engineering, biomedical, and other applied sciences. Introduces notation, definitions, and foundational concepts of fractional q-calculus Presents existence and attractivity results for a class of implicit fractional q-difference equations in Banach and Fréchet spaces Focuses on the study of a class of coupled systems of Hilfer and Hilfer-Hadamard fractional differential equations
Author | : Saïd Abbas |
Publisher | : Springer Science & Business Media |
Total Pages | : 403 |
Release | : 2012-08-17 |
Genre | : Mathematics |
ISBN | : 146144036X |
Topics in Fractional Differential Equations is devoted to the existence and uniqueness of solutions for various classes of Darboux problems for hyperbolic differential equations or inclusions involving the Caputo fractional derivative. Fractional calculus generalizes the integrals and derivatives to non-integer orders. During the last decade, fractional calculus was found to play a fundamental role in the modeling of a considerable number of phenomena; in particular the modeling of memory-dependent and complex media such as porous media. It has emerged as an important tool for the study of dynamical systems where classical methods reveal strong limitations. Some equations present delays which may be finite, infinite, or state-dependent. Others are subject to an impulsive effect. The above problems are studied using the fixed point approach, the method of upper and lower solution, and the Kuratowski measure of noncompactness. This book is addressed to a wide audience of specialists such as mathematicians, engineers, biologists, and physicists.
Author | : Mouffak Benchohra |
Publisher | : Springer Nature |
Total Pages | : 197 |
Release | : 2023-07-10 |
Genre | : Mathematics |
ISBN | : 303134877X |
This book covers problems involving a variety of fractional differential equations, as well as some involving the generalized Hilfer fractional derivative, which unifies the Riemann-Liouville and Caputo fractional derivatives. The authors highlight the existence, uniqueness, and stability results for various classes of fractional differential equations based on the most recent research in the area. The book discusses the classic and novel fixed point theorems related to the measure of noncompactness in Banach spaces and explains how to utilize them as tools. The authors build each chapter upon the previous one, helping readers to develop their understanding of the topic. The book includes illustrated results, analysis, and suggestions for further study.
Author | : Bashir Ahmad |
Publisher | : Springer Nature |
Total Pages | : 597 |
Release | : |
Genre | : |
ISBN | : 3031625137 |
Author | : Shanzhen Lu |
Publisher | : World Scientific |
Total Pages | : 215 |
Release | : 2023-03-23 |
Genre | : Mathematics |
ISBN | : 9811253692 |
In many branches of mathematical analysis and mathematical physics, the Hardy operator and Hardy inequality are fundamentally important and have been intensively studied ever since the pioneer researches. This volume presents new properties of higher-dimensional Hardy operators obtained by the authors and their collaborators over the last decade. Its prime focus is on higher-dimensional Hardy operators that are based on the spherical average form.The key motivation for this monograph is based on the fact that the Hardy operator is generally smaller than the Hardy-Littlewood maximal operator, which leads to, on the one hand, the operator norm of the Hardy operator itself being smaller than the latter. On the other hand, the former characterizing the weight function class or function spaces is greater than the latter.
Author | : Wing-sum Cheung |
Publisher | : World Scientific |
Total Pages | : 442 |
Release | : 2023-10-18 |
Genre | : Mathematics |
ISBN | : 9811266999 |
This introductory book contains a rich collection of exercises and worked examples in Metric Spaces. Other than questions in the traditional setting, plenty of True-or-False type questions and open-ended questions are included. With detailed solutions, these are highly effective in helping students gain a bird's eye view and master the subject and pitfalls better. The presentation is clear in nurturing the mathematical insights and mathematical maturity of the readers.In this book, the pictorialization or visualization of abstract situations into simple pictures is very often crucially conducive to the understanding of the materials. This serves to give an insightful view of the intricate problems, as well as a clue or a direction to formulate rigorous arguments.The learning outcomes include:
Author | : Mouffak Benchohra |
Publisher | : Springer Nature |
Total Pages | : 190 |
Release | : 2023-05-11 |
Genre | : Mathematics |
ISBN | : 3031269284 |
This book explores fractional differential equations with a fixed point approach. The authors highlight the existence, uniqueness, and stability results for various classes of fractional differential equations. All of the problems in the book also deal with some form of of the well-known Hilfer fractional derivative, which unifies the Riemann-Liouville and Caputo fractional derivatives. Classical and new fixed point theorems, associated with the measure of noncompactness in Banach spaces as well as several generalizations of the Gronwall's lemma, are employed as tools. The book is based on many years of research in this area, and provides suggestions for further study as well. The authors have included illustrations in order to support the readers’ understanding of the concepts presented. Includes illustrations in order to support readers understanding of the presented concepts · Approaches the topic of fractional differential equations while employing fixed point theorems as tools · Presents novel results, which build upon previous literature and many years of research by the authors
Author | : Harendra Singh |
Publisher | : CRC Press |
Total Pages | : 255 |
Release | : 2019-09-17 |
Genre | : Mathematics |
ISBN | : 1000596788 |
This book features original research articles on the topic of mathematical modelling and fractional differential equations. The contributions, written by leading researchers in the field, consist of chapters on classical and modern dynamical systems modelled by fractional differential equations in physics, engineering, signal processing, fluid mechanics, and bioengineering, manufacturing, systems engineering, and project management. The book offers theory and practical applications for the solutions of real-life problems and will be of interest to graduate level students, educators, researchers, and scientists interested in mathematical modelling and its diverse applications. Features Presents several recent developments in the theory and applications of fractional calculus Includes chapters on different analytical and numerical methods dedicated to several mathematical equations Develops methods for the mathematical models which are governed by fractional differential equations Provides methods for models in physics, engineering, signal processing, fluid mechanics, and bioengineering Discusses real-world problems, theory, and applications
Author | : Anatoly Kochubei |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 528 |
Release | : 2019-02-19 |
Genre | : Mathematics |
ISBN | : 3110571668 |
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This second volume collects authoritative chapters covering the mathematical theory of fractional calculus, including ordinary and partial differential equations of fractional order, inverse problems, and evolution equations.