Fractional Deterministic and Stochastic Calculus
Author | : Giacomo Ascione |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 462 |
Release | : 2023-12-31 |
Genre | : Mathematics |
ISBN | : 3110780011 |
Download Fractional Deterministic And Stochastic Calculus full books in PDF, epub, and Kindle. Read online free Fractional Deterministic And Stochastic Calculus ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Giacomo Ascione |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 462 |
Release | : 2023-12-31 |
Genre | : Mathematics |
ISBN | : 3110780011 |
Author | : Fima C. Klebaner |
Publisher | : Imperial College Press |
Total Pages | : 431 |
Release | : 2005 |
Genre | : Mathematics |
ISBN | : 1860945554 |
This book presents a concise treatment of stochastic calculus and its applications. It gives a simple but rigorous treatment of the subject including a range of advanced topics, it is useful for practitioners who use advanced theoretical results. It covers advanced applications, such as models in mathematical finance, biology and engineering.Self-contained and unified in presentation, the book contains many solved examples and exercises. It may be used as a textbook by advanced undergraduates and graduate students in stochastic calculus and financial mathematics. It is also suitable for practitioners who wish to gain an understanding or working knowledge of the subject. For mathematicians, this book could be a first text on stochastic calculus; it is good companion to more advanced texts by a way of examples and exercises. For people from other fields, it provides a way to gain a working knowledge of stochastic calculus. It shows all readers the applications of stochastic calculus methods and takes readers to the technical level required in research and sophisticated modelling.This second edition contains a new chapter on bonds, interest rates and their options. New materials include more worked out examples in all chapters, best estimators, more results on change of time, change of measure, random measures, new results on exotic options, FX options, stochastic and implied volatility, models of the age-dependent branching process and the stochastic Lotka-Volterra model in biology, non-linear filtering in engineering and five new figures.Instructors can obtain slides of the text from the author.
Author | : Simo Särkkä |
Publisher | : Cambridge University Press |
Total Pages | : 327 |
Release | : 2019-05-02 |
Genre | : Business & Economics |
ISBN | : 1316510085 |
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Author | : Solym Mawaki Manou-Abi |
Publisher | : John Wiley & Sons |
Total Pages | : 308 |
Release | : 2020-04-28 |
Genre | : Mathematics |
ISBN | : 1786304546 |
This book highlights mathematical research interests that appear in real life, such as the study and modeling of random and deterministic phenomena. As such, it provides current research in mathematics, with applications in biological and environmental sciences, ecology, epidemiology and social perspectives. The chapters can be read independently of each other, with dedicated references specific to each chapter. The book is organized in two main parts. The first is devoted to some advanced mathematical problems regarding epidemic models; predictions of biomass; space-time modeling of extreme rainfall; modeling with the piecewise deterministic Markov process; optimal control problems; evolution equations in a periodic environment; and the analysis of the heat equation. The second is devoted to a modelization with interdisciplinarity in ecological, socio-economic, epistemological, demographic and social problems. Mathematical Modeling of Random and Deterministic Phenomena is aimed at expert readers, young researchers, plus graduate and advanced undergraduate students who are interested in probability, statistics, modeling and mathematical analysis.
Author | : Vasily E. Tarasov |
Publisher | : MDPI |
Total Pages | : 278 |
Release | : 2020-06-03 |
Genre | : Business & Economics |
ISBN | : 303936118X |
This book is devoted to the application of fractional calculus in economics to describe processes with memory and non-locality. Fractional calculus is a branch of mathematics that studies the properties of differential and integral operators that are characterized by real or complex orders. Fractional calculus methods are powerful tools for describing the processes and systems with memory and nonlocality. Recently, fractional integro-differential equations have been used to describe a wide class of economical processes with power law memory and spatial nonlocality. Generalizations of basic economic concepts and notions the economic processes with memory were proposed. New mathematical models with continuous time are proposed to describe economic dynamics with long memory. This book is a collection of articles reflecting the latest mathematical and conceptual developments in mathematical economics with memory and non-locality based on applications of fractional calculus.
Author | : Grigorios A. Pavliotis |
Publisher | : Springer |
Total Pages | : 345 |
Release | : 2014-11-19 |
Genre | : Mathematics |
ISBN | : 1493913239 |
This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.
Author | : Richard Durrett |
Publisher | : Springer |
Total Pages | : 282 |
Release | : 2016-11-07 |
Genre | : Mathematics |
ISBN | : 3319456148 |
Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.
Author | : Iván Area |
Publisher | : |
Total Pages | : 288 |
Release | : 2019 |
Genre | : Boundary value problems |
ISBN | : 9783030269883 |
This book is devoted to Prof. Juan J. Nieto, on the occasion of his 60th birthday. Juan José Nieto Roig (born 1958, A Coruña) is a Spanish mathematician, who has been a Professor of Mathematical Analysis at the University of Santiago de Compostela since 1991. His most influential contributions to date are in the area of differential equations. Nieto received his degree in Mathematics from the University of Santiago de Compostela in 1980. He was then awarded a Fulbright scholarship and moved to the University of Texas at Arlington where he worked with Professor V. Lakshmikantham. He received his Ph. D. in Mathematics from the University of Santiago de Compostela in 1983. Nieto's work may be considered to fall within the ambit of differential equations, and his research interests include fractional calculus, fuzzy equations and epidemiological models. He is one of the worlds most cited mathematicians according to Web of Knowledge, and appears in the Thompson Reuters Highly Cited Researchers list. Nieto has also occupied different positions at the University of Santiago de Compostela, such as Dean of Mathematics and Director of the Mathematical Institute. He has also served as an editor for various mathematical journals, and was the editor-in-chief of the journal Nonlinear Analysis: Real World Applications from 2009 to 2012. In 2016, Nieto was admitted as a Fellow of the Royal Galician Academy of Sciences. This book consists of contributions presented at the International Conference on Nonlinear Analysis and Boundary Value Problems, held in Santiago de Compostela, Spain, 4th-7th September 2018. Covering a variety of topics linked to Nietos scientific work, ranging from differential, difference and fractional equations to epidemiological models and dynamical systems and their applications, it is primarily intended for researchers involved in nonlinear analysis and boundary value problems in a broad sense.
Author | : Samuel N Cohen |
Publisher | : World Scientific |
Total Pages | : 605 |
Release | : 2012-08-10 |
Genre | : Mathematics |
ISBN | : 9814483915 |
This book consists of a series of new, peer-reviewed papers in stochastic processes, analysis, filtering and control, with particular emphasis on mathematical finance, actuarial science and engineering. Paper contributors include colleagues, collaborators and former students of Robert Elliott, many of whom are world-leading experts and have made fundamental and significant contributions to these areas.This book provides new important insights and results by eminent researchers in the considered areas, which will be of interest to researchers and practitioners. The topics considered will be diverse in applications, and will provide contemporary approaches to the problems considered. The areas considered are rapidly evolving. This volume will contribute to their development, and present the current state-of-the-art stochastic processes, analysis, filtering and control.Contributing authors include: H Albrecher, T Bielecki, F Dufour, M Jeanblanc, I Karatzas, H-H Kuo, A Melnikov, E Platen, G Yin, Q Zhang, C Chiarella, W Fleming, D Madan, R Mamon, J Yan, V Krishnamurthy.
Author | : Ioannis Karatzas |
Publisher | : Springer |
Total Pages | : 490 |
Release | : 2014-03-27 |
Genre | : Mathematics |
ISBN | : 1461209498 |
A graduate-course text, written for readers familiar with measure-theoretic probability and discrete-time processes, wishing to explore stochastic processes in continuous time. The vehicle chosen for this exposition is Brownian motion, which is presented as the canonical example of both a martingale and a Markov process with continuous paths. In this context, the theory of stochastic integration and stochastic calculus is developed, illustrated by results concerning representations of martingales and change of measure on Wiener space, which in turn permit a presentation of recent advances in financial economics. The book contains a detailed discussion of weak and strong solutions of stochastic differential equations and a study of local time for semimartingales, with special emphasis on the theory of Brownian local time. The whole is backed by a large number of problems and exercises.