Fractional Calculus and Fractional Processes with Applications to Financial Economics

Fractional Calculus and Fractional Processes with Applications to Financial Economics
Author: Hasan Fallahgoul
Publisher: Academic Press
Total Pages: 120
Release: 2016-10-06
Genre: Mathematics
ISBN: 0128042842

Fractional Calculus and Fractional Processes with Applications to Financial Economics presents the theory and application of fractional calculus and fractional processes to financial data. Fractional calculus dates back to 1695 when Gottfried Wilhelm Leibniz first suggested the possibility of fractional derivatives. Research on fractional calculus started in full earnest in the second half of the twentieth century. The fractional paradigm applies not only to calculus, but also to stochastic processes, used in many applications in financial economics such as modelling volatility, interest rates, and modelling high-frequency data. The key features of fractional processes that make them interesting are long-range memory, path-dependence, non-Markovian properties, self-similarity, fractal paths, and anomalous diffusion behaviour. In this book, the authors discuss how fractional calculus and fractional processes are used in financial modelling and finance economic theory. It provides a practical guide that can be useful for students, researchers, and quantitative asset and risk managers interested in applying fractional calculus and fractional processes to asset pricing, financial time-series analysis, stochastic volatility modelling, and portfolio optimization. - Provides the necessary background for the book's content as applied to financial economics - Analyzes the application of fractional calculus and fractional processes from deterministic and stochastic perspectives

Mathematical Economics

Mathematical Economics
Author: Vasily E. Tarasov
Publisher: MDPI
Total Pages: 278
Release: 2020-06-03
Genre: Business & Economics
ISBN: 303936118X

This book is devoted to the application of fractional calculus in economics to describe processes with memory and non-locality. Fractional calculus is a branch of mathematics that studies the properties of differential and integral operators that are characterized by real or complex orders. Fractional calculus methods are powerful tools for describing the processes and systems with memory and nonlocality. Recently, fractional integro-differential equations have been used to describe a wide class of economical processes with power law memory and spatial nonlocality. Generalizations of basic economic concepts and notions the economic processes with memory were proposed. New mathematical models with continuous time are proposed to describe economic dynamics with long memory. This book is a collection of articles reflecting the latest mathematical and conceptual developments in mathematical economics with memory and non-locality based on applications of fractional calculus.

Fractional-order Modeling of Nuclear Reactor: From Subdiffusive Neutron Transport to Control-oriented Models

Fractional-order Modeling of Nuclear Reactor: From Subdiffusive Neutron Transport to Control-oriented Models
Author: Vishwesh Vyawahare
Publisher: Springer
Total Pages: 210
Release: 2018-02-03
Genre: Technology & Engineering
ISBN: 9811075875

This book addresses the topic of fractional-order modeling of nuclear reactors. Approaching neutron transport in the reactor core as anomalous diffusion, specifically subdiffusion, it starts with the development of fractional-order neutron telegraph equations. Using a systematic approach, the book then examines the development and analysis of various fractional-order models representing nuclear reactor dynamics, ultimately leading to the fractional-order linear and nonlinear control-oriented models. The book utilizes the mathematical tool of fractional calculus, the calculus of derivatives and integrals with arbitrary non-integer orders (real or complex), which has recently been found to provide a more compact and realistic representation to the dynamics of diverse physical systems. Including extensive simulation results and discussing important issues related to the fractional-order modeling of nuclear reactors, the book offers a valuable resource for students and researchers working in the areas of fractional-order modeling and control and nuclear reactor modeling.

Advances in Differential and Difference Equations with Applications 2020

Advances in Differential and Difference Equations with Applications 2020
Author: Dumitru Baleanu
Publisher: MDPI
Total Pages: 348
Release: 2021-01-20
Genre: Computers
ISBN: 3039368702

It is very well known that differential equations are related with the rise of physical science in the last several decades and they are used successfully for models of real-world problems in a variety of fields from several disciplines. Additionally, difference equations represent the discrete analogues of differential equations. These types of equations started to be used intensively during the last several years for their multiple applications, particularly in complex chaotic behavior. A certain class of differential and related difference equations is represented by their respective fractional forms, which have been utilized to better describe non-local phenomena appearing in all branches of science and engineering. The purpose of this book is to present some common results given by mathematicians together with physicists, engineers, as well as other scientists, for whom differential and difference equations are valuable research tools. The reported results can be used by researchers and academics working in both pure and applied differential equations.

Multi-Chaos, Fractal and Multi-Fractional Artificial Intelligence of Different Complex Systems

Multi-Chaos, Fractal and Multi-Fractional Artificial Intelligence of Different Complex Systems
Author: Yeliz Karaca
Publisher: Academic Press
Total Pages: 352
Release: 2022-06-22
Genre: Science
ISBN: 0323886167

Multi-Chaos, Fractal and Multi-Fractional Artificial Intelligence of Different Complex Systems addresses different uncertain processes inherent in the complex systems, attempting to provide global and robust optimized solutions distinctively through multifarious methods, technical analyses, modeling, optimization processes, numerical simulations, case studies as well as applications including theoretical aspects of complexity. Foregrounding Multi-chaos, Fractal and Multi-fractional in the era of Artificial Intelligence (AI), the edited book deals with multi- chaos, fractal, multifractional, fractional calculus, fractional operators, quantum, wavelet, entropy-based applications, artificial intelligence, mathematics-informed and data driven processes aside from the means of modelling, and simulations for the solution of multifaceted problems characterized by nonlinearity, non-regularity and self-similarity, frequently encountered in different complex systems. The fundamental interacting components underlying complexity, complexity thinking, processes and theory along with computational processes and technologies, with machine learning as the core component of AI demonstrate the enabling of complex data to augment some critical human skills. Appealing to an interdisciplinary network of scientists and researchers to disseminate the theory and application in medicine, neurology, mathematics, physics, biology, chemistry, information theory, engineering, computer science, social sciences and other far-reaching domains, the overarching aim is to empower out-of-the-box thinking through multifarious methods, directed towards paradoxical situations, uncertain processes, chaotic, transient and nonlinear dynamics of complex systems. - Constructs and presents a multifarious approach for critical decision-making processes embodying paradoxes and uncertainty. - Includes a combination of theory and applications with regard to multi-chaos, fractal and multi-fractional as well as AI of different complex systems and many-body systems. - Provides readers with a bridge between application of advanced computational mathematical methods and AI based on comprehensive analyses and broad theories.

Basic Theory

Basic Theory
Author: Anatoly Kochubei
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 490
Release: 2019-02-19
Genre: Mathematics
ISBN: 3110571625

This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This first volume collects authoritative chapters covering the mathematical theory of fractional calculus, including fractional-order operators, integral transforms and equations, special functions, calculus of variations, and probabilistic and other aspects.

Fractional Calculus And Waves In Linear Viscoelasticity: An Introduction To Mathematical Models (Second Edition)

Fractional Calculus And Waves In Linear Viscoelasticity: An Introduction To Mathematical Models (Second Edition)
Author: Francesco Mainardi
Publisher: World Scientific
Total Pages: 626
Release: 2022-08-16
Genre: Mathematics
ISBN: 1783264004

Fractional Calculus and Waves in Linear Viscoelasticity (Second Edition) is a self-contained treatment of the mathematical theory of linear (uni-axial) viscoelasticity (constitutive equation and waves) with particular regard to models based on fractional calculus. It serves as a general introduction to the above-mentioned areas of mathematical modeling. The explanations in the book are detailed enough to capture the interest of the curious reader, and complete enough to provide the necessary background material needed to delve further into the subject and explore the research literature. In particular the relevant role played by some special functions is pointed out along with their visualization through plots. Graphics are extensively used in the book and a large general bibliography is included at the end.This new edition keeps the structure of the first edition but each chapter has been revised and expanded, and new additions include a novel appendix on complete monotonic and Bernstein functions that are known to play a fundamental role in linear viscoelasticity.This book is suitable for engineers, graduate students and researchers interested in fractional calculus and continuum mechanics.

Applications in Engineering, Life and Social Sciences, Part B

Applications in Engineering, Life and Social Sciences, Part B
Author: Dumitru BĒŽleanu
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 292
Release: 2019-04-01
Genre: Mathematics
ISBN: 3110571927

This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This eighth volume collects authoritative chapters covering several applications of fractional calculus in engineering, life and social sciences, including applications in signal and image analysis, and chaos.