The Fourier Transform and Its Applications
Author | : Ronald Newbold Bracewell |
Publisher | : |
Total Pages | : |
Release | : 1978 |
Genre | : Fourier transformations |
ISBN | : |
Download Fourier Transforms With Applications full books in PDF, epub, and Kindle. Read online free Fourier Transforms With Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Ronald Newbold Bracewell |
Publisher | : |
Total Pages | : |
Release | : 1978 |
Genre | : Fourier transformations |
ISBN | : |
Author | : Eric W. Hansen |
Publisher | : John Wiley & Sons |
Total Pages | : 788 |
Release | : 2014-10-01 |
Genre | : Mathematics |
ISBN | : 1118901797 |
Fourier Transforms: Principles and Applications explains transform methods and their applications to electrical systems from circuits, antennas, and signal processors—ably guiding readers from vector space concepts through the Discrete Fourier Transform (DFT), Fourier series, and Fourier transform to other related transform methods. Featuring chapter end summaries of key results, over two hundred examples and four hundred homework problems, and a Solutions Manual this book is perfect for graduate students in signal processing and communications as well as practicing engineers. Class-tested at Dartmouth Provides the same solid background as classic texts in the field, but with an emphasis on digital and other contemporary applications to signal and image processing Modular coverage of material allows for topics to be covered by preference MATLAB files and Solutions Manual available to instructors Over 300 figures, 200 worked examples, and 432 homework problems
Author | : John Francis James |
Publisher | : Cambridge University Press |
Total Pages | : 156 |
Release | : 2002-09-19 |
Genre | : Mathematics |
ISBN | : 9780521004282 |
Fourier transform theory is of central importance in a vast range of applications in physical science, engineering, and applied mathematics. This new edition of a successful student text provides a concise introduction to the theory and practice of Fourier transforms, using qualitative arguments wherever possible and avoiding unnecessary mathematics. After a brief description of the basic ideas and theorems, the power of the technique is then illustrated by referring to particular applications in optics, spectroscopy, electronics and telecommunications. The rarely discussed but important field of multi-dimensional Fourier theory is covered, including a description of computer-aided tomography (CAT-scanning). The final chapter discusses digital methods, with particular attention to the fast Fourier transform. Throughout, discussion of these applications is reinforced by the inclusion of worked examples. The book assumes no previous knowledge of the subject, and will be invaluable to students of physics, electrical and electronic engineering, and computer science.
Author | : E. Oran Brigham |
Publisher | : Pearson |
Total Pages | : 474 |
Release | : 1988 |
Genre | : Mathematics |
ISBN | : |
The Fast Fourier Transform (FFT) is a mathematical method widely used in signal processing. This book focuses on the application of the FFT in a variety of areas: Biomedical engineering, mechanical analysis, analysis of stock market data, geophysical analysis, and the conventional radar communications field.
Author | : Brad G. Osgood |
Publisher | : American Mathematical Soc. |
Total Pages | : 713 |
Release | : 2019-01-18 |
Genre | : Mathematics |
ISBN | : 1470441918 |
This book is derived from lecture notes for a course on Fourier analysis for engineering and science students at the advanced undergraduate or beginning graduate level. Beyond teaching specific topics and techniques—all of which are important in many areas of engineering and science—the author's goal is to help engineering and science students cultivate more advanced mathematical know-how and increase confidence in learning and using mathematics, as well as appreciate the coherence of the subject. He promises the readers a little magic on every page. The section headings are all recognizable to mathematicians, but the arrangement and emphasis are directed toward students from other disciplines. The material also serves as a foundation for advanced courses in signal processing and imaging. There are over 200 problems, many of which are oriented to applications, and a number use standard software. An unusual feature for courses meant for engineers is a more detailed and accessible treatment of distributions and the generalized Fourier transform. There is also more coverage of higher-dimensional phenomena than is found in most books at this level.
Author | : Robert M. Gray |
Publisher | : Springer Science & Business Media |
Total Pages | : 374 |
Release | : 2012-12-06 |
Genre | : Technology & Engineering |
ISBN | : 1461523591 |
The Fourier transform is one of the most important mathematical tools in a wide variety of fields in science and engineering. In the abstract it can be viewed as the transformation of a signal in one domain (typically time or space) into another domain, the frequency domain. Applications of Fourier transforms, often called Fourier analysis or harmonic analysis, provide useful decompositions of signals into fundamental or "primitive" components, provide shortcuts to the computation of complicated sums and integrals, and often reveal hidden structure in data. Fourier analysis lies at the base of many theories of science and plays a fundamental role in practical engineering design. The origins of Fourier analysis in science can be found in Ptolemy's decomposing celestial orbits into cycles and epicycles and Pythagorus' de composing music into consonances. Its modern history began with the eighteenth century work of Bernoulli, Euler, and Gauss on what later came to be known as Fourier series. J. Fourier in his 1822 Theorie analytique de la Chaleur [16] (still available as a Dover reprint) was the first to claim that arbitrary periodic functions could be expanded in a trigonometric (later called a Fourier) series, a claim that was eventually shown to be incorrect, although not too far from the truth. It is an amusing historical sidelight that this work won a prize from the French Academy, in spite of serious concerns expressed by the judges (Laplace, Lagrange, and Legendre) re garding Fourier's lack of rigor.
Author | : M. Rahman |
Publisher | : WIT Press |
Total Pages | : 193 |
Release | : 2011 |
Genre | : Mathematics |
ISBN | : 1845645642 |
The generalized function is one of the important branches of mathematics which has enormous applications in practical fields. In particular its applications to the theory of distribution and signal processing are very much essential. In this computer age, information science plays a very important role and the Fourier transform is extremely significant in deciphering obscured information to be made understandable. The book contains six chapters and three appendices. Chapter 1 deals with the preliminary remarks of Fourier series from general point of view. Chapter 2 is concerned with the generalized functions and their Fourier transforms. Chapter 3 contains the Fourier transforms of particular generalized functions. Chapter 4 deals with the asymptotic estimation of Fourier transforms. Chapter 5 is devoted to the study of Fourier series as a series of generalized functions. Chapter 6 deals with the fast Fourier transforms.Appendix A contains the extended list of Fourier transform pairs.Appendix B illustrates the properties of impulse function.Appendix C contains an extended list of biographical references
Author | : J. F. James |
Publisher | : Cambridge University Press |
Total Pages | : 161 |
Release | : 2011-03-31 |
Genre | : Science |
ISBN | : 1139493949 |
Fourier transform theory is of central importance in a vast range of applications in physical science, engineering and applied mathematics. Providing a concise introduction to the theory and practice of Fourier transforms, this book is invaluable to students of physics, electrical and electronic engineering, and computer science. After a brief description of the basic ideas and theorems, the power of the technique is illustrated through applications in optics, spectroscopy, electronics and telecommunications. The rarely discussed but important field of multi-dimensional Fourier theory is covered, including a description of Computer Axial Tomography (CAT scanning). The book concludes by discussing digital methods, with particular attention to the Fast Fourier Transform and its implementation. This new edition has been revised to include new and interesting material, such as convolution with a sinusoid, coherence, the Michelson stellar interferometer and the van Cittert–Zernike theorem, Babinet's principle and dipole arrays.
Author | : K.R. Rao |
Publisher | : Springer Science & Business Media |
Total Pages | : 437 |
Release | : 2011-02-21 |
Genre | : Mathematics |
ISBN | : 1402066295 |
This book presents an introduction to the principles of the fast Fourier transform. This book covers FFTs, frequency domain filtering, and applications to video and audio signal processing. As fields like communications, speech and image processing, and related areas are rapidly developing, the FFT as one of essential parts in digital signal processing has been widely used. Thus there is a pressing need from instructors and students for a book dealing with the latest FFT topics. This book provides thorough and detailed explanation of important or up-to-date FFTs. It also has adopted modern approaches like MATLAB examples and projects for better understanding of diverse FFTs.
Author | : Ian Naismith Sneddon |
Publisher | : Courier Corporation |
Total Pages | : 564 |
Release | : 1995-01-01 |
Genre | : Mathematics |
ISBN | : 9780486685229 |
Focusing on applications of Fourier transforms and related topics rather than theory, this accessible treatment is suitable for students and researchers interested in boundary value problems of physics and engineering. 1951 edition.