Fourier Integral Operators

Fourier Integral Operators
Author: J.J. Duistermaat
Publisher: Springer Science & Business Media
Total Pages: 155
Release: 2010-11-03
Genre: Mathematics
ISBN: 0817681086

This volume is a useful introduction to the subject of Fourier Integral Operators and is based on the author’s classic set of notes. Covering a range of topics from Hörmander’s exposition of the theory, Duistermaat approaches the subject from symplectic geometry and includes application to hyperbolic equations (= equations of wave type) and oscillatory asymptotic solutions which may have caustics. This text is suitable for mathematicians and (theoretical) physicists with an interest in (linear) partial differential equations, especially in wave propagation, rep. WKB-methods.

The Analysis of Linear Partial Differential Operators IV

The Analysis of Linear Partial Differential Operators IV
Author: Lars Hörmander
Publisher: Springer Science & Business Media
Total Pages: 363
Release: 2009-04-28
Genre: Mathematics
ISBN: 364200136X

From the reviews: "Volumes III and IV complete L. Hörmander's treatise on linear partial differential equations. They constitute the most complete and up-to-date account of this subject, by the author who has dominated it and made the most significant contributions in the last decades.....It is a superb book, which must be present in every mathematical library, and an indispensable tool for all - young and old - interested in the theory of partial differential operators." L. Boutet de Monvel in Bulletin of the American Mathematical Society, 1987 "This treatise is outstanding in every respect and must be counted among the great books in mathematics. It is certainly no easy reading (...) but a careful study is extremely rewarding for its wealth of ideas and techniques and the beauty of presentation." J. Brüning in Zentralblatt MATH, 1987 Honours awarded to Lars Hörmander: Fields Medal 1962, Speaker at International Congress 1970, Wolf Prize 1988, AMS Steele Prize 2006

The Analysis of Linear Partial Differential Operators I

The Analysis of Linear Partial Differential Operators I
Author: Lars Hörmander
Publisher: Springer
Total Pages: 462
Release: 1990-08-10
Genre: Mathematics
ISBN: 9783540523437

The main change in this edition is the inclusion of exercises with answers and hints. This is meant to emphasize that this volume has been written as a general course in modern analysis on a graduate student level and not only as the beginning of a specialized course in partial differen tial equations. In particular, it could also serve as an introduction to harmonic analysis. Exercises are given primarily to the sections of gen eral interest; there are none to the last two chapters. Most of the exercises are just routine problems meant to give some familiarity with standard use of the tools introduced in the text. Others are extensions of the theory presented there. As a rule rather complete though brief solutions are then given in the answers and hints. To a large extent the exercises have been taken over from courses or examinations given by Anders Melin or myself at the University of Lund. I am grateful to Anders Melin for letting me use the problems originating from him and for numerous valuable comments on this collection. As in the revised printing of Volume II, a number of minor flaws have also been corrected in this edition. Many of these have been called to my attention by the Russian translators of the first edition, and I wish to thank them for our excellent collaboration.

Pseudodifferential and Singular Integral Operators

Pseudodifferential and Singular Integral Operators
Author: Helmut Abels
Publisher: Walter de Gruyter
Total Pages: 233
Release: 2011-12-23
Genre: Mathematics
ISBN: 3110250314

This textbook provides a self-contained and elementary introduction to the modern theory of pseudodifferential operators and their applications to partial differential equations. In the first chapters, the necessary material on Fourier transformation and distribution theory is presented. Subsequently the basic calculus of pseudodifferential operators on the n-dimensional Euclidean space is developed. In order to present the deep results on regularity questions for partial differential equations, an introduction to the theory of singular integral operators is given - which is of interest for its own. Moreover, to get a wide range of applications, one chapter is devoted to the modern theory of Besov and Bessel potential spaces. In order to demonstrate some fundamental approaches and the power of the theory, several applications to wellposedness and regularity question for elliptic and parabolic equations are presented throughout the book. The basic notation of functional analysis needed in the book is introduced and summarized in the appendix. The text is comprehensible for students of mathematics and physics with a basic education in analysis.

Ordinary and Partial Differential Equations

Ordinary and Partial Differential Equations
Author: Ravi P. Agarwal
Publisher: Springer Science & Business Media
Total Pages: 422
Release: 2008-11-13
Genre: Mathematics
ISBN: 0387791469

In this undergraduate/graduate textbook, the authors introduce ODEs and PDEs through 50 class-tested lectures. Mathematical concepts are explained with clarity and rigor, using fully worked-out examples and helpful illustrations. Exercises are provided at the end of each chapter for practice. The treatment of ODEs is developed in conjunction with PDEs and is aimed mainly towards applications. The book covers important applications-oriented topics such as solutions of ODEs in form of power series, special functions, Bessel functions, hypergeometric functions, orthogonal functions and polynomials, Legendre, Chebyshev, Hermite, and Laguerre polynomials, theory of Fourier series. Undergraduate and graduate students in mathematics, physics and engineering will benefit from this book. The book assumes familiarity with calculus.

Functional Analysis, Sobolev Spaces and Partial Differential Equations

Functional Analysis, Sobolev Spaces and Partial Differential Equations
Author: Haim Brezis
Publisher: Springer Science & Business Media
Total Pages: 600
Release: 2010-11-02
Genre: Mathematics
ISBN: 0387709142

This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.

Louis Boutet de Monvel, Selected Works

Louis Boutet de Monvel, Selected Works
Author: Victor W. Guillemin
Publisher: Birkhäuser
Total Pages: 855
Release: 2017-05-05
Genre: Mathematics
ISBN: 3319279092

This book features a selection of articles by Louis Boutet de Monvel and presents his contributions to the theory of partial differential equations and analysis. The works selected here reveal his central role in the development of his field, including three cornerstones: firstly, analytic pseudodifferential operators, which have become a fundamental aspect of analytic microlocal analysis, and secondly the Boutet de Monvel calculus for boundary problems for elliptic partial differential operators, which is still an important tool also in index theory. Thirdly, Boutet de Monvel was one of the first people to recognize the importance of the existence of generalized functions, whose singularities are concentrated on a single ray in phase space, which led him to make essential contributions to hypoelliptic operators and to a very successful and influential calculus of Toeplitz operators with applications to spectral and index theory. Other topics treated here include microlocal analysis, star products and deformation quantization as well as problems in several complex variables, index theory and geometric quantization. This book will appeal to both experts in the field and students who are new to this subject.