Foundations of Symmetric Spaces of Measurable Functions

Foundations of Symmetric Spaces of Measurable Functions
Author: Ben-Zion A. Rubshtein
Publisher: Springer
Total Pages: 262
Release: 2016-12-09
Genre: Mathematics
ISBN: 331942758X

Key definitions and results in symmetric spaces, particularly Lp, Lorentz, Marcinkiewicz and Orlicz spaces are emphasized in this textbook. A comprehensive overview of the Lorentz, Marcinkiewicz and Orlicz spaces is presented based on concepts and results of symmetric spaces. Scientists and researchers will find the application of linear operators, ergodic theory, harmonic analysis and mathematical physics noteworthy and useful. This book is intended for graduate students and researchers in mathematics and may be used as a general reference for the theory of functions, measure theory, and functional analysis. This self-contained text is presented in four parts totaling seventeen chapters to correspond with a one-semester lecture course. Each of the four parts begins with an overview and is subsequently divided into chapters, each of which concludes with exercises and notes. A chapter called “Complements” is included at the end of the text as supplementary material to assist students with independent work.

The Rademacher System in Function Spaces

The Rademacher System in Function Spaces
Author: Sergey V. Astashkin
Publisher: Springer Nature
Total Pages: 567
Release: 2020-07-27
Genre: Mathematics
ISBN: 3030478904

This book presents a systematic treatment of the Rademacher system, one of the most important unifying concepts in mathematics, and includes a number of recent important and beautiful results related to the Rademacher functions. The book discusses the relationship between the properties of the Rademacher system and geometry of some function spaces. It consists of three parts, in which this system is considered respectively in Lp-spaces, in general symmetric spaces and in certain classes of non-symmetric spaces (BMO, Paley, Cesaro, Morrey). The presentation is clear and transparent, providing all main results with detailed proofs. Moreover, literary and historical comments are given at the end of each chapter. This book will be suitable for graduate students and researchers interested in functional analysis, theory of functions and geometry of Banach spaces.

Noncommutative Integration and Operator Theory

Noncommutative Integration and Operator Theory
Author: Peter G. Dodds
Publisher: Springer Nature
Total Pages: 583
Release: 2024-01-19
Genre: Mathematics
ISBN: 303149654X

The purpose of this monograph is to provide a systematic account of the theory of noncommutative integration in semi-finite von Neumann algebras. It is designed to serve as an introductory graduate level text as well as a basic reference for more established mathematicians with interests in the continually expanding areas of noncommutative analysis and probability. Its origins lie in two apparently distinct areas of mathematical analysis: the theory of operator ideals going back to von Neumann and Schatten and the general theory of rearrangement invariant Banach lattices of measurable functions which has its roots in many areas of classical analysis related to the well-known Lp-spaces. A principal aim, therefore, is to present a general theory which contains each of these motivating areas as special cases.

Handbook of the Geometry of Banach Spaces

Handbook of the Geometry of Banach Spaces
Author: William B. Johnson
Publisher: Elsevier
Total Pages: 880
Release: 2001
Genre: Banach spaces
ISBN: 9780444513052

The Handbook presents an overview of most aspects of modern Banach space theory and its applications. The up-to-date surveys, authored by leading research workers in the area, are written to be accessible to a wide audience. In addition to presenting the state of the art of Banach space theory, the surveys discuss the relation of the subject with such areas as harmonic analysis, complex analysis, classical convexity, probability theory, operator theory, combinatorics, logic, geometric measure theory, and partial differential equations. The Handbook begins with a chapter on basic concepts in Banach space theory which contains all the background needed for reading any other chapter in the Handbook. Each of the twenty one articles in this volume after the basic concepts chapter is devoted to one specific direction of Banach space theory or its applications. Each article contains a motivated introduction as well as an exposition of the main results, methods, and open problems in its specific direction. Most have an extensive bibliography. Many articles contain new proofs of known results as well as expositions of proofs which are hard to locate in the literature or are only outlined in the original research papers. As well as being valuable to experienced researchers in Banach space theory, the Handbook should be an outstanding source for inspiration and information to graduate students and beginning researchers. The Handbook will be useful for mathematicians who want to get an idea of the various developments in Banach space theory.

The Lambert W Function

The Lambert W Function
Author: Istvan Mezo
Publisher: CRC Press
Total Pages: 275
Release: 2022-04-10
Genre: Mathematics
ISBN: 1000551245

This book is the very first one in the English language entirely dedicated to the Lambert W function, its generalizations, and its applications. One goal is to promote future research on the topic. The book contains all the information one needs when trying to find a result. The most important formulas and results are framed. The Lambert W function is a multi-valued inverse function with plenty of applications in areas like molecular physics, relativity theory, fuel consumption models, plasma physics, analysis of epidemics, bacterial growth models, delay differential equations, fluid mechanics, game theory, statistics, study of magnetic materials, and so on. The first part of the book gives a full treatise of the W function from theoretical point of view. The second part presents generalizations of this function which have been introduced by the need of applications where the classical W function is insufficient. The third part presents a large number of applications from physics, biology, game theory, bacterial cell growth models, and so on. The second part presents the generalized Lambert functions based on the tools we had developed in the first part. In the third part familiarity with Newtonian physics will be useful. The text is written to be accessible for everyone with only basic knowledge on calculus and complex numbers. Additional features include the Further Notes sections offering interesting research problems and information for further studies. Mathematica codes are included. The Lambert function is arguably the simplest non-elementary transcendental function out of the standard set of sin, cos, log, etc., therefore students who would like to deepen their understanding of real and complex analysis can see a new “almost elementary” function on which they can practice their knowledge.

Harmonic Analysis on Symmetric Spaces—Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane

Harmonic Analysis on Symmetric Spaces—Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane
Author: Audrey Terras
Publisher: Springer Science & Business Media
Total Pages: 430
Release: 2013-09-12
Genre: Mathematics
ISBN: 146147972X

This unique text is an introduction to harmonic analysis on the simplest symmetric spaces, namely Euclidean space, the sphere, and the Poincaré upper half plane. This book is intended for beginning graduate students in mathematics or researchers in physics or engineering. Written with an informal style, the book places an emphasis on motivation, concrete examples, history, and, above all, applications in mathematics, statistics, physics, and engineering. Many corrections and updates have been incorporated in this new edition. Updates include discussions of P. Sarnak and others' work on quantum chaos, the work of T. Sunada, Marie-France Vignéras, Carolyn Gordon, and others on Mark Kac's question "Can you hear the shape of a drum?", A. Lubotzky, R. Phillips and P. Sarnak's examples of Ramanujan graphs, and, finally, the author's comparisons of continuous theory with the finite analogues. Topics featured throughout the text include inversion formulas for Fourier transforms, central limit theorems, Poisson's summation formula and applications in crystallography and number theory, applications of spherical harmonic analysis to the hydrogen atom, the Radon transform, non-Euclidean geometry on the Poincaré upper half plane H or unit disc and applications to microwave engineering, fundamental domains in H for discrete groups Γ, tessellations of H from such discrete group actions, automorphic forms, and the Selberg trace formula and its applications in spectral theory as well as number theory.

Positivity and Noncommutative Analysis

Positivity and Noncommutative Analysis
Author: Gerard Buskes
Publisher: Springer
Total Pages: 604
Release: 2019-08-09
Genre: Mathematics
ISBN: 3030108503

Capturing the state of the art of the interplay between positivity, noncommutative analysis, and related areas including partial differential equations, harmonic analysis, and operator theory, this volume was initiated on the occasion of the Delft conference in honour of Ben de Pagter's 65th birthday. It will be of interest to researchers in positivity, noncommutative analysis, and related fields. Contributions by Shavkat Ayupov, Amine Ben Amor, Karim Boulabiar, Qingying Bu, Gerard Buskes, Martijn Caspers, Jurie Conradie, Garth Dales, Marcel de Jeu, Peter Dodds, Theresa Dodds, Julio Flores, Jochen Glück, Jacobus Grobler, Wolter Groenevelt, Markus Haase, Klaas Pieter Hart, Francisco Hernández, Jamel Jaber, Rien Kaashoek, Turabay Kalandarov, Anke Kalauch, Arkady Kitover, Erik Koelink, Karimbergen Kudaybergenov, Louis Labuschagne, Yongjin Li, Nick Lindemulder, Emiel Lorist, Qi Lü, Miek Messerschmidt, Susumu Okada, Mehmet Orhon, Denis Potapov, Werner Ricker, Stephan Roberts, Pablo Román, Anton Schep, Claud Steyn, Fedor Sukochev, James Sweeney, Guido Sweers, Pedro Tradacete, Jan Harm van der Walt, Onno van Gaans, Jan van Neerven, Arnoud van Rooij, Freek van Schagen, Dominic Vella, Mark Veraar, Anthony Wickstead, Marten Wortel, Ivan Yaroslavtsev, and Dmitriy Zanin.

Causal Symmetric Spaces

Causal Symmetric Spaces
Author: Gestur Olafsson
Publisher: Academic Press
Total Pages: 303
Release: 1996-09-11
Genre: Mathematics
ISBN: 0080528724

This book is intended to introduce researchers and graduate students to the concepts of causal symmetric spaces. To date, results of recent studies considered standard by specialists have not been widely published. This book seeks to bring this information to students and researchers in geometry and analysis on causal symmetric spaces.Includes the newest results in harmonic analysis including Spherical functions on ordered symmetric space and the holmorphic discrete series and Hardy spaces on compactly casual symmetric spacesDeals with the infinitesimal situation, coverings of symmetric spaces, classification of causal symmetric pairs and invariant cone fieldsPresents basic geometric properties of semi-simple symmetric spacesIncludes appendices on Lie algebras and Lie groups, Bounded symmetric domains (Cayley transforms), Antiholomorphic Involutions on Bounded Domains and Para-Hermitian Symmetric Spaces