Foundations of Genetic Algorithms 1991 (FOGA 1)

Foundations of Genetic Algorithms 1991 (FOGA 1)
Author: Gregory J.E. Rawlins
Publisher: Elsevier
Total Pages: 348
Release: 2014-06-28
Genre: Mathematics
ISBN: 0080506844

Foundations of Genetic Algorithms 1991 (FOGA 1) discusses the theoretical foundations of genetic algorithms (GA) and classifier systems. This book compiles research papers on selection and convergence, coding and representation, problem hardness, deception, classifier system design, variation and recombination, parallelization, and population divergence. Other topics include the non-uniform Walsh-schema transform; spurious correlations and premature convergence in genetic algorithms; and variable default hierarchy separation in a classifier system. The grammar-based genetic algorithm; conditions for implicit parallelism; and analysis of multi-point crossover are also elaborated. This text likewise covers the genetic algorithms for real parameter optimization and isomorphisms of genetic algorithms. This publication is a good reference for students and researchers interested in genetic algorithms.

Foundations of Genetic Algorithms 1993 (FOGA 2)

Foundations of Genetic Algorithms 1993 (FOGA 2)
Author: FOGA
Publisher: Morgan Kaufmann
Total Pages: 343
Release: 2014-06-28
Genre: Mathematics
ISBN: 0080948324

Foundations of Genetic Algorithms, Volume 2 provides insight of theoretical work in genetic algorithms. This book provides a general understanding of a canonical genetic algorithm. Organized into six parts encompassing 19 chapters, this volume begins with an overview of genetic algorithms in the broader adaptive systems context. This text then reviews some results in mathematical genetics that use probability distributions to characterize the effects of recombination on multiple loci in the absence of selection. Other chapters examine the static building block hypothesis (SBBH), which is the underlying assumption used to define deception. This book discusses as well the effect of noise on the quality of convergence of genetic algorithms. The final chapter deals with the primary goal in machine learning and artificial intelligence, which is to dynamically and automatically decompose problems into simpler problems to facilitate their solution. This book is a valuable resource for theorists and genetic algorithm researchers.

Evolutionary Multi-Criterion Optimization

Evolutionary Multi-Criterion Optimization
Author: Hisao Ishibuchi
Publisher: Springer Nature
Total Pages: 781
Release: 2021-03-24
Genre: Computers
ISBN: 3030720624

This book constitutes the refereed proceedings of the 11th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2021 held in Shenzhen, China, in March 2021. The 47 full papers and 14 short papers were carefully reviewed and selected from 120 submissions. The papers are divided into the following topical sections: theory; algorithms; dynamic multi-objective optimization; constrained multi-objective optimization; multi-modal optimization; many-objective optimization; performance evaluations and empirical studies; EMO and machine learning; surrogate modeling and expensive optimization; MCDM and interactive EMO; and applications.

Collectives and the Design of Complex Systems

Collectives and the Design of Complex Systems
Author: Kagan Tumer
Publisher: Springer Science & Business Media
Total Pages: 329
Release: 2012-12-06
Genre: Mathematics
ISBN: 1441989099

Many complex systems found in nature can be viewed as function optimizers. In particular, they can be viewed as such optimizers of functions in extremely high dimensional spaces. Given the difficulty of performing such high-dimensional op timization with modern computers, there has been a lot of exploration of computa tional algorithms that try to emulate those naturally-occurring function optimizers. Examples include simulated annealing (SA [15,18]), genetic algorithms (GAs) and evolutionary computation [2,3,9,11,20-22,24,28]. The ultimate goal of this work is an algorithm that can, for any provided high-dimensional function, come close to extremizing that function. Particularly desirable would be such an algorithm that works in an adaptive and robust manner, without any explicit knowledge of the form of the function being optimized. In particular, such an algorithm could be used for distributed adaptive control---one of the most important tasks engineers will face in the future, when the systems they design will be massively distributed and horribly messy congeries ofcomputational systems.

Evolutionary Computation 1

Evolutionary Computation 1
Author: Thomas Baeck
Publisher: CRC Press
Total Pages: 378
Release: 2018-10-03
Genre: Computers
ISBN: 148226871X

The field of evolutionary computation is expanding dramatically, fueled by the vast investment that reflects the value of applying its techniques. Culling material from the Handbook of Evolutionary Computation, Evolutionary Computation 1: Basic Algorithms and Operators contains up-to-date information on algorithms and operators used in evolutionary computing. This volume discusses the basic ideas that underlie the main paradigms of evolutionary algorithms, evolution strategies, evolutionary programming, and genetic programming. It is intended to be used by individual researchers, teachers, and students working and studying in this expanding field.

Computational Intelligence

Computational Intelligence
Author: Nazmul Siddique
Publisher: John Wiley & Sons
Total Pages: 524
Release: 2013-05-06
Genre: Technology & Engineering
ISBN: 1118534816

Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing presents an introduction to some of the cutting edge technological paradigms under the umbrella of computational intelligence. Computational intelligence schemes are investigated with the development of a suitable framework for fuzzy logic, neural networks and evolutionary computing, neuro-fuzzy systems, evolutionary-fuzzy systems and evolutionary neural systems. Applications to linear and non-linear systems are discussed with examples. Key features: Covers all the aspects of fuzzy, neural and evolutionary approaches with worked out examples, MATLAB® exercises and applications in each chapter Presents the synergies of technologies of computational intelligence such as evolutionary fuzzy neural fuzzy and evolutionary neural systems Considers real world problems in the domain of systems modelling, control and optimization Contains a foreword written by Lotfi Zadeh Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing is an ideal text for final year undergraduate, postgraduate and research students in electrical, control, computer, industrial and manufacturing engineering.

Multi-Objective Optimization using Evolutionary Algorithms

Multi-Objective Optimization using Evolutionary Algorithms
Author: Kalyanmoy Deb
Publisher: John Wiley & Sons
Total Pages: 540
Release: 2001-07-05
Genre: Mathematics
ISBN: 9780471873396

Optimierung mit mehreren Zielen, evolutionäre Algorithmen: Dieses Buch wendet sich vorrangig an Einsteiger, denn es werden kaum Vorkenntnisse vorausgesetzt. Geboten werden alle notwendigen Grundlagen, um die Theorie auf Probleme der Ingenieurtechnik, der Vorhersage und der Planung anzuwenden. Der Autor gibt auch einen Ausblick auf Forschungsaufgaben der Zukunft.

Parallel Problem Solving from Nature – PPSN XV

Parallel Problem Solving from Nature – PPSN XV
Author: Anne Auger
Publisher: Springer
Total Pages: 515
Release: 2018-08-30
Genre: Computers
ISBN: 3319992597

This two-volume set LNCS 11101 and 11102 constitutes the refereed proceedings of the 15th International Conference on Parallel Problem Solving from Nature, PPSN 2018, held in Coimbra, Portugal, in September 2018. The 79 revised full papers were carefully reviewed and selected from 205 submissions. The papers cover a wide range of topics in natural computing including evolutionary computation, artificial neural networks, artificial life, swarm intelligence, artificial immune systems, self-organizing systems, emergent behavior, molecular computing, evolutionary robotics, evolvable hardware, parallel implementations and applications to real-world problems. The papers are organized in the following topical sections: numerical optimization; combinatorial optimization; genetic programming; multi-objective optimization; parallel and distributed frameworks; runtime analysis and approximation results; fitness landscape modeling and analysis; algorithm configuration, selection, and benchmarking; machine learning and evolutionary algorithms; and applications. Also included are the descriptions of 23 tutorials and 6 workshops which took place in the framework of PPSN XV.

Evolutionary Multi-Criterion Optimization

Evolutionary Multi-Criterion Optimization
Author: Carlos A. Coello Coello
Publisher: Springer Science & Business Media
Total Pages: 927
Release: 2005-02-17
Genre: Computers
ISBN: 3540249834

This book constitutes the refereed proceedings of the Third International Conference on Evolutionary Multi-Criterion Optimization, EMO 2005, held in Guanajuato, Mexico, in March 2005. The 59 revised full papers presented together with 2 invited papers and the summary of a tutorial were carefully reviewed and selected from the 115 papers submitted. The papers are organized in topical sections on algorithm improvements, incorporation of preferences, performance analysis and comparison, uncertainty and noise, alternative methods, and applications in a broad variety of fields.

Sequential Approximate Multiobjective Optimization Using Computational Intelligence

Sequential Approximate Multiobjective Optimization Using Computational Intelligence
Author: Hirotaka Nakayama
Publisher: Springer Science & Business Media
Total Pages: 200
Release: 2009-06-12
Genre: Mathematics
ISBN: 3540889108

Many kinds of practical problems such as engineering design, industrial m- agement and ?nancial investment have multiple objectives con?icting with eachother. Thoseproblemscanbeformulatedasmultiobjectiveoptimization. In multiobjective optimization, there does not necessarily a unique solution which minimizes (or maximizes) all objective functions. We usually face to the situation in which if we want to improve some of objectives, we have to give up other objectives. Finally, we pay much attention on how much to improve some of objectives and instead how much to give up others. This is called “trade-o?. ” Note that making trade-o? is a problem of value ju- ment of decision makers. One of main themes of multiobjective optimization is how to incorporate value judgment of decision makers into decision s- port systems. There are two major issues in value judgment (1) multiplicity of value judgment and (2) dynamics of value judgment. The multiplicity of value judgment is treated as trade-o? analysis in multiobjective optimi- tion. On the other hand, dynamics of value judgment is di?cult to treat. However, it is natural that decision makers change their value judgment even in decision making process, because they obtain new information during the process. Therefore, decision support systems are to be robust against the change of value judgment of decision makers. To this aim, interactive p- grammingmethodswhichsearchasolutionwhileelicitingpartialinformation on value judgment of decision makers have been developed. Those methods are required to perform ?exibly for decision makers’ attitude.