Foundations Of Data Organization
Download Foundations Of Data Organization full books in PDF, epub, and Kindle. Read online free Foundations Of Data Organization ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Sakti P. Ghosh |
Publisher | : Springer Science & Business Media |
Total Pages | : 615 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 1461318815 |
Foundations of data organization is a relatively new field of research in comparison to, other branches of science. It is close to twenty years old. In this short life span of this branch of computer science, it has spread to all corners of the world, which is reflected in this book. This book covers new database application areas (databases for advanced applications and CAD/VLSI databases), computational geometry, file allocation & distributed databases, database models (including non traditional database models), database machines, query processing & physical structures for relational databases, besides traditional file organization (hashing, index file organization, mathematical file organization and consecutive retrieval property), in order to identify new trends of database research. The papers in this book originally represent talks given at the International Conference on Foundations of Data Organization, which was held on May 21-24, 1985, in Kyoto, Japan. This conference was held at Kyoto University, and sponsored by the organizing committee of the International Conference on Foundations of Data Organization and the Japan Society for the Promotion of Science. The conference was in cooperation with: ACM SIGMOD, IEEE Computer Society, Information Processing Society of Japan, IBM Research, Kyushu University, Kobe University, IBM Japan, Kyoto Sangyo University and Polish Academy of Sciences. This Conference was the follow-up of the first conference, which was hosted by the Polish Academy of Sciences and held at Warsaw in 1981. The Warsaw conference focused mainly on consecutive retrieval property and it's applications.
Author | : Avrim Blum |
Publisher | : Cambridge University Press |
Total Pages | : 433 |
Release | : 2020-01-23 |
Genre | : Computers |
ISBN | : 1108617360 |
This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.
Author | : David B. Lomet |
Publisher | : Springer Science & Business Media |
Total Pages | : 430 |
Release | : 1993-09-29 |
Genre | : Computers |
ISBN | : 9783540573012 |
This volume presents the proceedings of the Fourth International Conference on Data Organization and Algorithms, FODO '93, held in Evanston, Illinois. FODO '93 reflects the maturing of the database field which hasbeen driven by the enormous growth in the range of applications for databasesystems. The "non-standard" applications of the not-so-distant past, such ashypertext, multimedia, and scientific and engineering databases, now provide some of the central motivation for the advances in hardware technology and data organizations and algorithms. The volume contains 3 invited talks, 22 contributed papers, and 2 panel papers. The contributed papers are grouped into parts on multimedia, access methods, text processing, query processing, industrial applications, physical storage, andnew directions.
Author | : Edward Curry |
Publisher | : Springer Nature |
Total Pages | : 399 |
Release | : 2021-08-01 |
Genre | : Computers |
ISBN | : 3030681769 |
This open access book presents the foundations of the Big Data research and innovation ecosystem and the associated enablers that facilitate delivering value from data for business and society. It provides insights into the key elements for research and innovation, technical architectures, business models, skills, and best practices to support the creation of data-driven solutions and organizations. The book is a compilation of selected high-quality chapters covering best practices, technologies, experiences, and practical recommendations on research and innovation for big data. The contributions are grouped into four parts: · Part I: Ecosystem Elements of Big Data Value focuses on establishing the big data value ecosystem using a holistic approach to make it attractive and valuable to all stakeholders. · Part II: Research and Innovation Elements of Big Data Value details the key technical and capability challenges to be addressed for delivering big data value. · Part III: Business, Policy, and Societal Elements of Big Data Value investigates the need to make more efficient use of big data and understanding that data is an asset that has significant potential for the economy and society. · Part IV: Emerging Elements of Big Data Value explores the critical elements to maximizing the future potential of big data value. Overall, readers are provided with insights which can support them in creating data-driven solutions, organizations, and productive data ecosystems. The material represents the results of a collective effort undertaken by the European data community as part of the Big Data Value Public-Private Partnership (PPP) between the European Commission and the Big Data Value Association (BDVA) to boost data-driven digital transformation.
Author | : Cole Nussbaumer Knaflic |
Publisher | : John Wiley & Sons |
Total Pages | : 284 |
Release | : 2015-10-09 |
Genre | : Mathematics |
ISBN | : 1119002265 |
Don't simply show your data—tell a story with it! Storytelling with Data teaches you the fundamentals of data visualization and how to communicate effectively with data. You'll discover the power of storytelling and the way to make data a pivotal point in your story. The lessons in this illuminative text are grounded in theory, but made accessible through numerous real-world examples—ready for immediate application to your next graph or presentation. Storytelling is not an inherent skill, especially when it comes to data visualization, and the tools at our disposal don't make it any easier. This book demonstrates how to go beyond conventional tools to reach the root of your data, and how to use your data to create an engaging, informative, compelling story. Specifically, you'll learn how to: Understand the importance of context and audience Determine the appropriate type of graph for your situation Recognize and eliminate the clutter clouding your information Direct your audience's attention to the most important parts of your data Think like a designer and utilize concepts of design in data visualization Leverage the power of storytelling to help your message resonate with your audience Together, the lessons in this book will help you turn your data into high impact visual stories that stick with your audience. Rid your world of ineffective graphs, one exploding 3D pie chart at a time. There is a story in your data—Storytelling with Data will give you the skills and power to tell it!
Author | : John W. Foreman |
Publisher | : John Wiley & Sons |
Total Pages | : 432 |
Release | : 2013-10-31 |
Genre | : Business & Economics |
ISBN | : 1118839862 |
Data Science gets thrown around in the press like it'smagic. Major retailers are predicting everything from when theircustomers are pregnant to when they want a new pair of ChuckTaylors. It's a brave new world where seemingly meaningless datacan be transformed into valuable insight to drive smart businessdecisions. But how does one exactly do data science? Do you have to hireone of these priests of the dark arts, the "data scientist," toextract this gold from your data? Nope. Data science is little more than using straight-forward steps toprocess raw data into actionable insight. And in DataSmart, author and data scientist John Foreman will show you howthat's done within the familiar environment of aspreadsheet. Why a spreadsheet? It's comfortable! You get to look at the dataevery step of the way, building confidence as you learn the tricksof the trade. Plus, spreadsheets are a vendor-neutral place tolearn data science without the hype. But don't let the Excel sheets fool you. This is a book forthose serious about learning the analytic techniques, the math andthe magic, behind big data. Each chapter will cover a different technique in aspreadsheet so you can follow along: Mathematical optimization, including non-linear programming andgenetic algorithms Clustering via k-means, spherical k-means, and graphmodularity Data mining in graphs, such as outlier detection Supervised AI through logistic regression, ensemble models, andbag-of-words models Forecasting, seasonal adjustments, and prediction intervalsthrough monte carlo simulation Moving from spreadsheets into the R programming language You get your hands dirty as you work alongside John through eachtechnique. But never fear, the topics are readily applicable andthe author laces humor throughout. You'll even learnwhat a dead squirrel has to do with optimization modeling, whichyou no doubt are dying to know.
Author | : Richard A. Swanson |
Publisher | : Berrett-Koehler Publishers |
Total Pages | : 481 |
Release | : 2005-07-01 |
Genre | : Business & Economics |
ISBN | : 1605093335 |
Richard A. Swanson and Elwood F. Holton, leading scholars in the field, bring together contributions from more than twenty distinguished researchers from multiple disciplines to provide a comprehensive introductory textbook on organizational research. Designed for use by professors and students in graduate-level programs in business, management, organizational leadership, and human resource development, Research in Organizations teaches how to apply a range of methodolgies to the study of organizations. This comprehensive guide covers the theoretical foundations of various research methods, shows how to apply those methods in organizational settings, and examines the ethical conduct of research. It provides a holistic perspective, embracing quantitative, qualitative, and mixed-methodology approaches and illuminating them through numerous illustrative examples.
Author | : Serge Abiteboul |
Publisher | : Addison Wesley |
Total Pages | : 766 |
Release | : 1995 |
Genre | : Computers |
ISBN | : |
This product is a complete reference to both classical material and advanced topics that are otherwise scattered in sometimes hard-to-find papers. A major effort in writing the book was made to highlight the intuitions behind the theoretical development.
Author | : Ted Malaska |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 196 |
Release | : 2018-08-29 |
Genre | : Computers |
ISBN | : 1492038695 |
While many companies ponder implementation details such as distributed processing engines and algorithms for data analysis, this practical book takes a much wider view of big data development, starting with initial planning and moving diligently toward execution. Authors Ted Malaska and Jonathan Seidman guide you through the major components necessary to start, architect, and develop successful big data projects. Everyone from CIOs and COOs to lead architects and developers will explore a variety of big data architectures and applications, from massive data pipelines to web-scale applications. Each chapter addresses a piece of the software development life cycle and identifies patterns to maximize long-term success throughout the life of your project. Start the planning process by considering the key data project types Use guidelines to evaluate and select data management solutions Reduce risk related to technology, your team, and vague requirements Explore system interface design using APIs, REST, and pub/sub systems Choose the right distributed storage system for your big data system Plan and implement metadata collections for your data architecture Use data pipelines to ensure data integrity from source to final storage Evaluate the attributes of various engines for processing the data you collect
Author | : Elisa Bertino |
Publisher | : Now Publishers Inc |
Total Pages | : 164 |
Release | : 2011-02 |
Genre | : Computers |
ISBN | : 1601984162 |
A comprehensive survey of the foundational models and recent research trends in access control models and mechanisms for database management systems.