Foundations of Algorithms
Author | : Richard E. Neapolitan |
Publisher | : Jones & Bartlett Learning |
Total Pages | : 647 |
Release | : 2011 |
Genre | : Computers |
ISBN | : 0763782505 |
Data Structures & Theory of Computation
Download Foundations Of Algorithms full books in PDF, epub, and Kindle. Read online free Foundations Of Algorithms ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Richard E. Neapolitan |
Publisher | : Jones & Bartlett Learning |
Total Pages | : 647 |
Release | : 2011 |
Genre | : Computers |
ISBN | : 0763782505 |
Data Structures & Theory of Computation
Author | : Robert E. Schapire |
Publisher | : MIT Press |
Total Pages | : 544 |
Release | : 2014-01-10 |
Genre | : Computers |
ISBN | : 0262526034 |
An accessible introduction and essential reference for an approach to machine learning that creates highly accurate prediction rules by combining many weak and inaccurate ones. Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate “rules of thumb.” A remarkably rich theory has evolved around boosting, with connections to a range of topics, including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical. This book, written by the inventors of the method, brings together, organizes, simplifies, and substantially extends two decades of research on boosting, presenting both theory and applications in a way that is accessible to readers from diverse backgrounds while also providing an authoritative reference for advanced researchers. With its introductory treatment of all material and its inclusion of exercises in every chapter, the book is appropriate for course use as well. The book begins with a general introduction to machine learning algorithms and their analysis; then explores the core theory of boosting, especially its ability to generalize; examines some of the myriad other theoretical viewpoints that help to explain and understand boosting; provides practical extensions of boosting for more complex learning problems; and finally presents a number of advanced theoretical topics. Numerous applications and practical illustrations are offered throughout.
Author | : Zhi-Hua Zhou |
Publisher | : CRC Press |
Total Pages | : 238 |
Release | : 2012-06-06 |
Genre | : Business & Economics |
ISBN | : 1439830037 |
An up-to-date, self-contained introduction to a state-of-the-art machine learning approach, Ensemble Methods: Foundations and Algorithms shows how these accurate methods are used in real-world tasks. It gives you the necessary groundwork to carry out further research in this evolving field. After presenting background and terminology, the book covers the main algorithms and theories, including Boosting, Bagging, Random Forest, averaging and voting schemes, the Stacking method, mixture of experts, and diversity measures. It also discusses multiclass extension, noise tolerance, error-ambiguity and bias-variance decompositions, and recent progress in information theoretic diversity. Moving on to more advanced topics, the author explains how to achieve better performance through ensemble pruning and how to generate better clustering results by combining multiple clusterings. In addition, he describes developments of ensemble methods in semi-supervised learning, active learning, cost-sensitive learning, class-imbalance learning, and comprehensibility enhancement.
Author | : Claus Weihs |
Publisher | : CRC Press |
Total Pages | : 495 |
Release | : 2013-12-09 |
Genre | : Mathematics |
ISBN | : 1439878870 |
A new and refreshingly different approach to presenting the foundations of statistical algorithms, Foundations of Statistical Algorithms: With References to R Packages reviews the historical development of basic algorithms to illuminate the evolution of today’s more powerful statistical algorithms. It emphasizes recurring themes in all statistical algorithms, including computation, assessment and verification, iteration, intuition, randomness, repetition and parallelization, and scalability. Unique in scope, the book reviews the upcoming challenge of scaling many of the established techniques to very large data sets and delves into systematic verification by demonstrating how to derive general classes of worst case inputs and emphasizing the importance of testing over a large number of different inputs. Broadly accessible, the book offers examples, exercises, and selected solutions in each chapter as well as access to a supplementary website. After working through the material covered in the book, readers should not only understand current algorithms but also gain a deeper understanding of how algorithms are constructed, how to evaluate new algorithms, which recurring principles are used to tackle some of the tough problems statistical programmers face, and how to take an idea for a new method and turn it into something practically useful.
Author | : Cynthia Dwork |
Publisher | : |
Total Pages | : 286 |
Release | : 2014 |
Genre | : Computers |
ISBN | : 9781601988188 |
The problem of privacy-preserving data analysis has a long history spanning multiple disciplines. As electronic data about individuals becomes increasingly detailed, and as technology enables ever more powerful collection and curation of these data, the need increases for a robust, meaningful, and mathematically rigorous definition of privacy, together with a computationally rich class of algorithms that satisfy this definition. Differential Privacy is such a definition. The Algorithmic Foundations of Differential Privacy starts out by motivating and discussing the meaning of differential privacy, and proceeds to explore the fundamental techniques for achieving differential privacy, and the application of these techniques in creative combinations, using the query-release problem as an ongoing example. A key point is that, by rethinking the computational goal, one can often obtain far better results than would be achieved by methodically replacing each step of a non-private computation with a differentially private implementation. Despite some powerful computational results, there are still fundamental limitations. Virtually all the algorithms discussed herein maintain differential privacy against adversaries of arbitrary computational power -- certain algorithms are computationally intensive, others are efficient. Computational complexity for the adversary and the algorithm are both discussed. The monograph then turns from fundamentals to applications other than query-release, discussing differentially private methods for mechanism design and machine learning. The vast majority of the literature on differentially private algorithms considers a single, static, database that is subject to many analyses. Differential privacy in other models, including distributed databases and computations on data streams, is discussed. The Algorithmic Foundations of Differential Privacy is meant as a thorough introduction to the problems and techniques of differential privacy, and is an invaluable reference for anyone with an interest in the topic.
Author | : Francisco Herrera |
Publisher | : Springer |
Total Pages | : 241 |
Release | : 2016-11-08 |
Genre | : Computers |
ISBN | : 3319477595 |
This book provides a general overview of multiple instance learning (MIL), defining the framework and covering the central paradigms. The authors discuss the most important algorithms for MIL such as classification, regression and clustering. With a focus on classification, a taxonomy is set and the most relevant proposals are specified. Efficient algorithms are developed to discover relevant information when working with uncertainty. Key representative applications are included. This book carries out a study of the key related fields of distance metrics and alternative hypothesis. Chapters examine new and developing aspects of MIL such as data reduction for multi-instance problems and imbalanced MIL data. Class imbalance for multi-instance problems is defined at the bag level, a type of representation that utilizes ambiguity due to the fact that bag labels are available, but the labels of the individual instances are not defined. Additionally, multiple instance multiple label learning is explored. This learning framework introduces flexibility and ambiguity in the object representation providing a natural formulation for representing complicated objects. Thus, an object is represented by a bag of instances and is allowed to have associated multiple class labels simultaneously. This book is suitable for developers and engineers working to apply MIL techniques to solve a variety of real-world problems. It is also useful for researchers or students seeking a thorough overview of MIL literature, methods, and tools.
Author | : Jeremy Watt |
Publisher | : Cambridge University Press |
Total Pages | : 597 |
Release | : 2020-01-09 |
Genre | : Computers |
ISBN | : 1108480721 |
An intuitive approach to machine learning covering key concepts, real-world applications, and practical Python coding exercises.
Author | : Kenneth Lange |
Publisher | : SIAM |
Total Pages | : 227 |
Release | : 2020-05-04 |
Genre | : Mathematics |
ISBN | : 1611976170 |
Algorithms are a dominant force in modern culture, and every indication is that they will become more pervasive, not less. The best algorithms are undergirded by beautiful mathematics. This text cuts across discipline boundaries to highlight some of the most famous and successful algorithms. Readers are exposed to the principles behind these examples and guided in assembling complex algorithms from simpler building blocks. Written in clear, instructive language within the constraints of mathematical rigor, Algorithms from THE BOOK includes a large number of classroom-tested exercises at the end of each chapter. The appendices cover background material often omitted from undergraduate courses. Most of the algorithm descriptions are accompanied by Julia code, an ideal language for scientific computing. This code is immediately available for experimentation. Algorithms from THE BOOK is aimed at first-year graduate and advanced undergraduate students. It will also serve as a convenient reference for professionals throughout the mathematical sciences, physical sciences, engineering, and the quantitative sectors of the biological and social sciences.
Author | : Michael T. Goodrich |
Publisher | : John Wiley & Sons |
Total Pages | : 722 |
Release | : 2001-10-15 |
Genre | : Computers |
ISBN | : 0471383651 |
Michael Goodrich and Roberto Tamassia, authors of the successful, Data Structures and Algorithms in Java, 2/e, have written Algorithm Engineering, a text designed to provide a comprehensive introduction to the design, implementation and analysis of computer algorithms and data structures from a modern perspective. This book offers theoretical analysis techniques as well as algorithmic design patterns and experimental methods for the engineering of algorithms. Market: Computer Scientists; Programmers.
Author | : Eric Bach |
Publisher | : MIT Press |
Total Pages | : 536 |
Release | : 1996 |
Genre | : Computers |
ISBN | : 9780262024051 |
Volume 1.