Forms of Fermat Equations and Their Zeta Functions

Forms of Fermat Equations and Their Zeta Functions
Author: Lars Brnjes
Publisher: World Scientific
Total Pages: 246
Release: 2004
Genre: Mathematics
ISBN: 9812560394

In this volume, an abstract theory of 'forms' is developed, thus providing a conceptually satisfying framework for the classification of forms of Fermat equations. The classical results on diagonal forms are extended to the broader class of all forms of Fermat varieties.The main topic is the study of forms of the Fermat equation over an arbitrary field K. Using Galois descent, all such forms are classified; particularly, a complete and explicit classification of all cubic binary equations is given. If K is a finite field containing the d-th roots of unity, the Galois representation on l-adic cohomology (and so in particular the zeta function) of the hypersurface associated with an arbitrary form of the Fermat equation of degree d is computed.

Forms of Fermat Equations and Their Zeta Functions

Forms of Fermat Equations and Their Zeta Functions
Author: Lars Brnjes
Publisher: World Scientific
Total Pages: 246
Release: 2004
Genre: Science
ISBN: 9812561803

In this volume, an abstract theory of oOe1/4 formsoOe1/4Oao is developed, thus providing a conceptually satisfying framework for the classification of forms of Fermat equations. The classical results on diagonal forms are extended to the broader class of all forms of Fermat varieties."

Zeta Functions in Algebra and Geometry

Zeta Functions in Algebra and Geometry
Author: Antonio Campillo
Publisher: American Mathematical Soc.
Total Pages: 362
Release: 2012
Genre: Mathematics
ISBN: 0821869000

Contains the proceedings of the Second International Workshop on Zeta Functions in Algebra and Geometry held May 3-7, 2010 at the Universitat de les Illes Balears, Palma de Mallorca, Spain. The conference focused on the following topics: arithmetic and geometric aspects of local, topological, and motivic zeta functions, Poincare series of valuations, zeta functions of groups, rings, and representations, prehomogeneous vector spaces and their zeta functions, and height zeta functions.

Modular Forms and Fermat’s Last Theorem

Modular Forms and Fermat’s Last Theorem
Author: Gary Cornell
Publisher: Springer Science & Business Media
Total Pages: 608
Release: 1997
Genre: Mathematics
ISBN: 9780387946092

A collection of expanded versions of lectures given at an instructional conference on number theory and arithmetic geometry held at Boston University. The purpose of the conference, and indeed this book, is to introduce and explain the many ideas and techniques used by Wiles in his proof, and to explain how his result can be combined with Ribet's theorem and ideas of Frey and Serre to show, at long last, that Fermat's Last Theorem is true. The book begins with an overview of the complete proof, theory of elliptic curves, modular functions, modular curves, Galois cohomology, and finite group schemes. In recognition of the historical significance of Fermat's Last Theorem, the volume concludes by reflecting on the history of the problem, while placing Wiles' theorem into a more general Diophantine context suggesting future applications.

Some Applications of Modular Forms

Some Applications of Modular Forms
Author: Peter Sarnak
Publisher: Cambridge University Press
Total Pages: 124
Release: 1990-11-15
Genre: Mathematics
ISBN: 1316582442

The theory of modular forms and especially the so-called 'Ramanujan Conjectures' have been applied to resolve problems in combinatorics, computer science, analysis and number theory. This tract, based on the Wittemore Lectures given at Yale University, is concerned with describing some of these applications. In order to keep the presentation reasonably self-contained, Professor Sarnak begins by developing the necessary background material in modular forms. He then considers the solution of three problems: the Ruziewicz problem concerning finitely additive rotationally invariant measures on the sphere; the explicit construction of highly connected but sparse graphs: 'expander graphs' and 'Ramanujan graphs'; and the Linnik problem concerning the distribution of integers that represent a given large integer as a sum of three squares. These applications are carried out in detail. The book therefore should be accessible to a wide audience of graduate students and researchers in mathematics and computer science.

The 1-2-3 of Modular Forms

The 1-2-3 of Modular Forms
Author: Jan Hendrik Bruinier
Publisher: Springer Science & Business Media
Total Pages: 273
Release: 2008-02-10
Genre: Mathematics
ISBN: 3540741194

This book grew out of three series of lectures given at the summer school on "Modular Forms and their Applications" at the Sophus Lie Conference Center in Nordfjordeid in June 2004. The first series treats the classical one-variable theory of elliptic modular forms. The second series presents the theory of Hilbert modular forms in two variables and Hilbert modular surfaces. The third series gives an introduction to Siegel modular forms and discusses a conjecture by Harder. It also contains Harder's original manuscript with the conjecture. Each part treats a number of beautiful applications.

A First Course in Modular Forms

A First Course in Modular Forms
Author: Fred Diamond
Publisher: Springer Science & Business Media
Total Pages: 462
Release: 2006-03-30
Genre: Mathematics
ISBN: 0387272267

This book introduces the theory of modular forms, from which all rational elliptic curves arise, with an eye toward the Modularity Theorem. Discussion covers elliptic curves as complex tori and as algebraic curves; modular curves as Riemann surfaces and as algebraic curves; Hecke operators and Atkin-Lehner theory; Hecke eigenforms and their arithmetic properties; the Jacobians of modular curves and the Abelian varieties associated to Hecke eigenforms. As it presents these ideas, the book states the Modularity Theorem in various forms, relating them to each other and touching on their applications to number theory. The authors assume no background in algebraic number theory and algebraic geometry. Exercises are included.

First European Congress of Mathematics Paris, July 6–10, 1992

First European Congress of Mathematics Paris, July 6–10, 1992
Author: Anthony Joseph
Publisher: Birkhäuser
Total Pages: 530
Release: 2012-12-06
Genre: Mathematics
ISBN: 3034891121

Table of Contents: D. Duffie: Martingales, Arbitrage, and Portfolio Choice J. Frhlich: Mathematical Aspects of the Quantum Hall Effect M. Giaquinta: Analytic and Geometric Aspects of Variational Problems for Vector Valued Mappings U. Hamenstdt: Harmonic Measures for Leafwise Elliptic Operators Along Foliations M. Kontsevich: Feynman Diagrams and Low-Dimensional Topology S.B. Kuksin: KAM-Theory for Partial Differential Equations M. Laczkovich: Paradoxical Decompositions: A Survey of Recent Results J.-F. Le Gall: A Path-Valued Markov Process and its Connections with Partial Differential Equations I. Madsen: The Cyclotomic Trace in Algebraic K-Theory A.S. Merkurjev: Algebraic K-Theory and Galois Cohomology J. Nekovr: Values of L-Functions and p-Adic Cohomology Y.A. Neretin: Mantles, Trains and Representations of Infinite Dimensional Groups M.A. Nowak: The Evolutionary Dynamics of HIV Infections R. Piene: On the Enumeration of Algebraic Curves - from Circles to Instantons A. Quarteroni: Mathematical Aspects of Domain Decomposition Methods A. Schrijver: Paths in Graphs and Curves on Surfaces B. Silverman: Function Estimation and Functional Data Analysis V. Strassen: Algebra and Complexity P. Tukia: Generalizations of Fuchsian and Kleinian Groups C. Viterbo: Properties of Embedded Lagrange Manifolds D. Voiculescu: Alternative Entropies in Operator Algebras M. Wodzicki : Algebraic K-Theory and Functional Analysis D. Zagier: Values of Zeta Functions and Their Applications.

Number Theory

Number Theory
Author: Kağan Kurşungöz
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 129
Release: 2021-11-08
Genre: Mathematics
ISBN: 311076119X

The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.