Formal Power Series and Algebraic Combinatorics

Formal Power Series and Algebraic Combinatorics
Author: Daniel Krob
Publisher: Springer Science & Business Media
Total Pages: 815
Release: 2013-03-09
Genre: Mathematics
ISBN: 3662041669

This book contains the extended abstracts presented at the 12th International Conference on Power Series and Algebraic Combinatorics (FPSAC '00) that took place at Moscow State University, June 26-30, 2000. These proceedings cover the most recent trends in algebraic and bijective combinatorics, including classical combinatorics, combinatorial computer algebra, combinatorial identities, combinatorics of classical groups, Lie algebra and quantum groups, enumeration, symmetric functions, young tableaux etc...

Formal Power Series and Algebraic Combinatorics (Series Formelles et Combinatoire Algebrique), 1994

Formal Power Series and Algebraic Combinatorics (Series Formelles et Combinatoire Algebrique), 1994
Author: Louis J. Billera
Publisher: American Mathematical Soc.
Total Pages: 210
Release: 1996
Genre: Mathematics
ISBN: 0821803247

Because of the interplay among many fields of mathematics and science, algebraic combinatorics is an area in which a wide variety of ideas and methods come together. The papers in this volume reflect the most interesting aspects of this rich interaction, and will be of interest to researchers in discrete mathematics and combinatorial systems.

Formal Power Series and Algebraic Combinatorics, 1994

Formal Power Series and Algebraic Combinatorics, 1994
Author: Louis J. Billera
Publisher: American Mathematical Soc.
Total Pages: 212
Release:
Genre: Mathematics
ISBN: 9780821870709

Because of the inteplay among many fields of mathematics and science, algebraic combinatorics is an area in which a wide variety of ideas and methods come together. The papers in this volume reflect the most interesting aspects of this rich interaction and will be of interest to researchers in discrete mathematics and combinatorial systems.

Algebraic Combinatorics

Algebraic Combinatorics
Author: Chris Godsil
Publisher: Routledge
Total Pages: 382
Release: 2017-10-19
Genre: Mathematics
ISBN: 1351467506

This graduate level text is distinguished both by the range of topics and the novelty of the material it treats--more than half of the material in it has previously only appeared in research papers. The first half of this book introduces the characteristic and matchings polynomials of a graph. It is instructive to consider these polynomials together because they have a number of properties in common. The matchings polynomial has links with a number of problems in combinatorial enumeration, particularly some of the current work on the combinatorics of orthogonal polynomials. This connection is discussed at some length, and is also in part the stimulus for the inclusion of chapters on orthogonal polynomials and formal power series. Many of the properties of orthogonal polynomials are derived from properties of characteristic polynomials. The second half of the book introduces the theory of polynomial spaces, which provide easy access to a number of important results in design theory, coding theory and the theory of association schemes. This book should be of interest to second year graduate text/reference in mathematics.

Algebraic Combinatorics

Algebraic Combinatorics
Author: Chris Godsil
Publisher: Routledge
Total Pages: 368
Release: 2017-10-19
Genre: Mathematics
ISBN: 1351467514

This graduate level text is distinguished both by the range of topics and the novelty of the material it treats--more than half of the material in it has previously only appeared in research papers. The first half of this book introduces the characteristic and matchings polynomials of a graph. It is instructive to consider these polynomials together because they have a number of properties in common. The matchings polynomial has links with a number of problems in combinatorial enumeration, particularly some of the current work on the combinatorics of orthogonal polynomials. This connection is discussed at some length, and is also in part the stimulus for the inclusion of chapters on orthogonal polynomials and formal power series. Many of the properties of orthogonal polynomials are derived from properties of characteristic polynomials. The second half of the book introduces the theory of polynomial spaces, which provide easy access to a number of important results in design theory, coding theory and the theory of association schemes. This book should be of interest to second year graduate text/reference in mathematics.

Algebraic Combinatorics

Algebraic Combinatorics
Author: Richard P. Stanley
Publisher: Springer Science & Business Media
Total Pages: 226
Release: 2013-06-17
Genre: Mathematics
ISBN: 1461469988

Written by one of the foremost experts in the field, Algebraic Combinatorics is a unique undergraduate textbook that will prepare the next generation of pure and applied mathematicians. The combination of the author’s extensive knowledge of combinatorics and classical and practical tools from algebra will inspire motivated students to delve deeply into the fascinating interplay between algebra and combinatorics. Readers will be able to apply their newfound knowledge to mathematical, engineering, and business models. The text is primarily intended for use in a one-semester advanced undergraduate course in algebraic combinatorics, enumerative combinatorics, or graph theory. Prerequisites include a basic knowledge of linear algebra over a field, existence of finite fields, and group theory. The topics in each chapter build on one another and include extensive problem sets as well as hints to selected exercises. Key topics include walks on graphs, cubes and the Radon transform, the Matrix–Tree Theorem, and the Sperner property. There are also three appendices on purely enumerative aspects of combinatorics related to the chapter material: the RSK algorithm, plane partitions, and the enumeration of labeled trees. Richard Stanley is currently professor of Applied Mathematics at the Massachusetts Institute of Technology. Stanley has received several awards including the George Polya Prize in applied combinatorics, the Guggenheim Fellowship, and the Leroy P. Steele Prize for mathematical exposition. Also by the author: Combinatorics and Commutative Algebra, Second Edition, © Birkhauser.

Bijective Combinatorics

Bijective Combinatorics
Author: Nicholas Loehr
Publisher: CRC Press
Total Pages: 600
Release: 2011-02-10
Genre: Computers
ISBN: 1439848866

Bijective proofs are some of the most elegant and powerful techniques in all of mathematics. Suitable for readers without prior background in algebra or combinatorics, Bijective Combinatorics presents a general introduction to enumerative and algebraic combinatorics that emphasizes bijective methods.The text systematically develops the mathematical

Open Problems in Algebraic Combinatorics

Open Problems in Algebraic Combinatorics
Author: Christine Berkesch
Publisher: American Mathematical Society
Total Pages: 382
Release: 2024-08-21
Genre: Mathematics
ISBN: 147047333X

In their preface, the editors describe algebraic combinatorics as the area of combinatorics concerned with exact, as opposed to approximate, results and which puts emphasis on interaction with other areas of mathematics, such as algebra, topology, geometry, and physics. It is a vibrant area, which saw several major developments in recent years. The goal of the 2022 conference Open Problems in Algebraic Combinatorics 2022 was to provide a forum for exchanging promising new directions and ideas. The current volume includes contributions coming from the talks at the conference, as well as a few other contributions written specifically for this volume. The articles cover the majority of topics in algebraic combinatorics with the aim of presenting recent important research results and also important open problems and conjectures encountered in this research. The editors hope that this book will facilitate the exchange of ideas in algebraic combinatorics.

Recent Trends in Algebraic Combinatorics

Recent Trends in Algebraic Combinatorics
Author: Hélène Barcelo
Publisher: Springer
Total Pages: 364
Release: 2019-01-21
Genre: Mathematics
ISBN: 3030051412

This edited volume features a curated selection of research in algebraic combinatorics that explores the boundaries of current knowledge in the field. Focusing on topics experiencing broad interest and rapid growth, invited contributors offer survey articles on representation theory, symmetric functions, invariant theory, and the combinatorics of Young tableaux. The volume also addresses subjects at the intersection of algebra, combinatorics, and geometry, including the study of polytopes, lattice points, hyperplane arrangements, crystal graphs, and Grassmannians. All surveys are written at an introductory level that emphasizes recent developments and open problems. An interactive tutorial on Schubert Calculus emphasizes the geometric and topological aspects of the topic and is suitable for combinatorialists as well as geometrically minded researchers seeking to gain familiarity with relevant combinatorial tools. Featured authors include prominent women in the field known for their exceptional writing of deep mathematics in an accessible manner. Each article in this volume was reviewed independently by two referees. The volume is suitable for graduate students and researchers interested in algebraic combinatorics.

Algebraic Combinatorics

Algebraic Combinatorics
Author: Peter Orlik
Publisher: Springer Science & Business Media
Total Pages: 182
Release: 2007-03-02
Genre: Mathematics
ISBN: 3540683755

Each year since 1996 the universities of Bergen, Oslo and Trondheim have organized summer schools in Nordfjordeid in various topics in algebra and related ?elds. Nordfjordeid is the birthplace of Sophus Lie, and is a village on the western coast of Norway situated among fjords and mountains, with sp- tacularscenerywhereveryougo. AssuchitisawelcomeplaceforbothNor- gian and international participants and lecturers. The theme for the summer school in 2003 was Algebraic Combinatorics. The organizing committee c- sisted of Gunnar Fløystad and Stein Arild Strømme (Bergen), Geir Ellingsrud and Kristian Ranestad (Oslo), and Alexej Rudakov and Sverre Smalø (Tro- heim). The summer school was partly ?nanced by NorFa-Nordisk Forsker- danningsakademi. With combinatorics reaching into and playing an important part of ever more areas in mathematics, in particular algebra, algebraic combinatorics was a timely theme. The ?st lecture series “Hyperplane arrangements” was given by Peter Orlik. He came as a refugee to Norway, eighteen years old, after the insurrection in Hungary in 1956. Despite now having lived more than four decades in the United States, he impressed us by speaking ?uent Norwegian without a trace of accent. The second lecture series “Discrete Morse theory and free resolutions” was given by Volkmar Welker. These two topics ori- nate back in the second half of the nineteenth century with simple problems on arrangements of lines in the plane and Hilberts syzygy theorem.