Forecasting With Exponential Smoothing
Download Forecasting With Exponential Smoothing full books in PDF, epub, and Kindle. Read online free Forecasting With Exponential Smoothing ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Rob Hyndman |
Publisher | : Springer Science & Business Media |
Total Pages | : 362 |
Release | : 2008-06-19 |
Genre | : Mathematics |
ISBN | : 3540719180 |
Exponential smoothing methods have been around since the 1950s, and are still the most popular forecasting methods used in business and industry. However, a modeling framework incorporating stochastic models, likelihood calculation, prediction intervals and procedures for model selection, was not developed until recently. This book brings together all of the important new results on the state space framework for exponential smoothing. It will be of interest to people wanting to apply the methods in their own area of interest as well as for researchers wanting to take the ideas in new directions. Part 1 provides an introduction to exponential smoothing and the underlying models. The essential details are given in Part 2, which also provide links to the most important papers in the literature. More advanced topics are covered in Part 3, including the mathematical properties of the models and extensions of the models for specific problems. Applications to particular domains are discussed in Part 4.
Author | : Rob J Hyndman |
Publisher | : OTexts |
Total Pages | : 380 |
Release | : 2018-05-08 |
Genre | : Business & Economics |
ISBN | : 0987507117 |
Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.
Author | : John C. Brocklebank, Ph.D. |
Publisher | : SAS Institute |
Total Pages | : 616 |
Release | : 2018-03-14 |
Genre | : Computers |
ISBN | : 1629605441 |
To use statistical methods and SAS applications to forecast the future values of data taken over time, you need only follow this thoroughly updated classic on the subject. With this third edition of SAS for Forecasting Time Series, intermediate-to-advanced SAS users—such as statisticians, economists, and data scientists—can now match the most sophisticated forecasting methods to the most current SAS applications. Starting with fundamentals, this new edition presents methods for modeling both univariate and multivariate data taken over time. From the well-known ARIMA models to unobserved components, methods that span the range from simple to complex are discussed and illustrated. Many of the newer methods are variations on the basic ARIMA structures. Completely updated, this new edition includes fresh, interesting business situations and data sets, and new sections on these up-to-date statistical methods: ARIMA models Vector autoregressive models Exponential smoothing models Unobserved component and state-space models Seasonal adjustment Spectral analysis Focusing on application, this guide teaches a wide range of forecasting techniques by example. The examples provide the statistical underpinnings necessary to put the methods into practice. The following up-to-date SAS applications are covered in this edition: The ARIMA procedure The AUTOREG procedure The VARMAX procedure The ESM procedure The UCM and SSM procedures The X13 procedure The SPECTRA procedure SAS Forecast Studio Each SAS application is presented with explanation of its strengths, weaknesses, and best uses. Even users of automated forecasting systems will benefit from this knowledge of what is done and why. Moreover, the accompanying examples can serve as templates that you easily adjust to fit your specific forecasting needs. This book is part of the SAS Press program.
Author | : Bovas Abraham |
Publisher | : John Wiley & Sons |
Total Pages | : 474 |
Release | : 2009-09-25 |
Genre | : Mathematics |
ISBN | : 0470317299 |
The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "This book, it must be said, lives up to the words on its advertising cover: 'Bridging the gap between introductory, descriptive approaches and highly advanced theoretical treatises, it provides a practical, intermediate level discussion of a variety of forecasting tools, and explains how they relate to one another, both in theory and practice.' It does just that!" -Journal of the Royal Statistical Society "A well-written work that deals with statistical methods and models that can be used to produce short-term forecasts, this book has wide-ranging applications. It could be used in the context of a study of regression, forecasting, and time series analysis by PhD students; or to support a concentration in quantitative methods for MBA students; or as a work in applied statistics for advanced undergraduates." -Choice Statistical Methods for Forecasting is a comprehensive, readable treatment of statistical methods and models used to produce short-term forecasts. The interconnections between the forecasting models and methods are thoroughly explained, and the gap between theory and practice is successfully bridged. Special topics are discussed, such as transfer function modeling; Kalman filtering; state space models; Bayesian forecasting; and methods for forecast evaluation, comparison, and control. The book provides time series, autocorrelation, and partial autocorrelation plots, as well as examples and exercises using real data. Statistical Methods for Forecasting serves as an outstanding textbook for advanced undergraduate and graduate courses in statistics, business, engineering, and the social sciences, as well as a working reference for professionals in business, industry, and government.
Author | : Anthony Fischetti |
Publisher | : Packt Publishing Ltd |
Total Pages | : 555 |
Release | : 2018-03-28 |
Genre | : Computers |
ISBN | : 1788397339 |
Learn, by example, the fundamentals of data analysis as well as several intermediate to advanced methods and techniques ranging from classification and regression to Bayesian methods and MCMC, which can be put to immediate use. Key Features Analyze your data using R – the most powerful statistical programming language Learn how to implement applied statistics using practical use-cases Use popular R packages to work with unstructured and structured data Book Description Frequently the tool of choice for academics, R has spread deep into the private sector and can be found in the production pipelines at some of the most advanced and successful enterprises. The power and domain-specificity of R allows the user to express complex analytics easily, quickly, and succinctly. Starting with the basics of R and statistical reasoning, this book dives into advanced predictive analytics, showing how to apply those techniques to real-world data though with real-world examples. Packed with engaging problems and exercises, this book begins with a review of R and its syntax with packages like Rcpp, ggplot2, and dplyr. From there, get to grips with the fundamentals of applied statistics and build on this knowledge to perform sophisticated and powerful analytics. Solve the difficulties relating to performing data analysis in practice and find solutions to working with messy data, large data, communicating results, and facilitating reproducibility. This book is engineered to be an invaluable resource through many stages of anyone’s career as a data analyst. What you will learn Gain a thorough understanding of statistical reasoning and sampling theory Employ hypothesis testing to draw inferences from your data Learn Bayesian methods for estimating parameters Train regression, classification, and time series models Handle missing data gracefully using multiple imputation Identify and manage problematic data points Learn how to scale your analyses to larger data with Rcpp, data.table, dplyr, and parallelization Put best practices into effect to make your job easier and facilitate reproducibility Who this book is for Budding data scientists and data analysts who are new to the concept of data analysis, or who want to build efficient analytical models in R will find this book to be useful. No prior exposure to data analysis is needed, although a fundamental understanding of the R programming language is required to get the best out of this book.
Author | : Robert Goodell Brown |
Publisher | : Courier Corporation |
Total Pages | : 486 |
Release | : 2004-01-01 |
Genre | : Technology & Engineering |
ISBN | : 9780486495927 |
Computer application techniques are applied to routine short-term forecasting and prediction in this classic of operations research. The text begins with a consideration of data sources and sampling intervals, progressing to discussions of time series models and probability models. An extensive overview of smoothing techniques surveys the mathematical techniques for periodically raising the estimates of coefficients in forecasting problems. Sections on forecasting and error measurement and analysis are followed by an exploration of alternatives and the applications of the forecast to specific problems, and a treatment of the handling of systems design problems ranges from observed data to decision rules. 1963 ed.
Author | : Kenneth D. Lawrence |
Publisher | : Industrial Press Inc. |
Total Pages | : 212 |
Release | : 2009 |
Genre | : Business & Economics |
ISBN | : 9780831133351 |
Forecasting is an integral part of almost all business enterprises. This book provides readers with the tools to analyze their data, develop forecasting models and present the results in Excel. Progressing from data collection, data presentation, to a step-by-step development of the forecasting techniques, this essential text covers techniques that include but not limited to time series-moving average, exponential smoothing, trending, simple and multiple regression, and Box-Jenkins. And unlike other products of its kind that require either high-priced statistical software or Excel add-ins, this book does not require such software. It can be used both as a primary text and as a supplementary text. Highlights the use of Excel screen shots, data tables, and graphs. Features Full Scale Use of Excel in Forecasting without the Use of Specialized Forecast Packages Includes Excel templates. Emphasizes the practical application of forecasting. Provides coverage of Special Forecasting, including New Product Forecasting, Network Models Forecasting, Links to Input/Output Modeling, and Combination of Forecasting.
Author | : Chee Peng Lim |
Publisher | : Springer Science & Business Media |
Total Pages | : 539 |
Release | : 2010-09-07 |
Genre | : Technology & Engineering |
ISBN | : 3642136397 |
Decision making arises when we wish to select the best possible course of action from a set of alternatives. With advancements of the digital technologies, it is easy, and almost instantaneous, to gather a large volume of information and/or data pertaining to a problem that we want to solve. For instance, the world-wi- web is perhaps the primary source of information and/or data that we often turn to when we face a decision making problem. However, the information and/or data that we obtain from the real world often are complex, and comprise various kinds of noise. Besides, real-world information and/or data often are incomplete and ambiguous, owing to uncertainties of the environments. All these make decision making a challenging task. To cope with the challenges of decision making, - searchers have designed and developed a variety of decision support systems to provide assistance in human decision making processes. The main aim of this book is to provide a small collection of techniques stemmed from artificial intelligence, as well as other complementary methodo- gies, that are useful for the design and development of intelligent decision support systems. Application examples of how these intelligent decision support systems can be utilized to help tackle a variety of real-world problems in different - mains, e. g. business, management, manufacturing, transportation and food ind- tries, and biomedicine, are also presented. A total of twenty chapters, which can be broadly divided into two parts, i. e.
Author | : Nicolas Vandeput |
Publisher | : Independently Published |
Total Pages | : 237 |
Release | : 2018-11-12 |
Genre | : |
ISBN | : 9781730969430 |
Data Science for Supply Chain Forecast Data Science for Supply Chain Forecast is a book for practitioners focusing on data science and machine learning; it demonstrates how both are closely interlinked in order to create an advanced forecast for supply chain. As one will discover in this book, artificial intelligence (AI) & machine learning (ML) are not simply a question of coding skills. Using data science in order to solve a problem requires a scientific mindset more than coding skills. The story behind these models is one of experimentation, of observation and of constant questioning; a true scientific method must be applied to supply chain. In the data science field as well as that of the supply chain, simple questions do not come with simple answers. In order to resolve these questions, one needs to be both a scientist as well as to use the correct tools. In this book, we will discuss both. Is this Book for me? This book has been written for supply chain practitioners, forecasters and analysts who are looking to go the extra mile. You do not need technical IT skills to start using the models of this book. You do not need a dedicated server or expensive software licenses: you solely need your own computer. You do not need a PhD in mathematics: mathematics will only be utilized as a tool to tweak and understand the models. In the majority of the cases - especially when it comes to machine learning - a deep understanding of the mathematical inner workings of a model will not be necessary in order to optimize it and understand its limitations. Reviews "In an age where analytics and machine learning are taking on larger roles in the business forecasting, Nicolas' book is perfect solution for professionals who need to combine practical supply chain experience with the mathematical and technological tools that can help us predict the future more reliably." Daniel Stanton - Author, Supply Chain Management For Dummies "Open source statistical toolkits have progressed tremendously over the last decade. Nicolas demonstrates that these toolkits are more than enough to start addressing real-world forecasting challenges as found in supply chains. Moreover, through its hands-on approach, this book is accessible to a large audience of supply chain practitioners. The supply chain of the 21st century will be data-driven and Nicolas gets it perfectly." Joannes Vermorel - CEO Lokad "This book is unique in its kind. It explains the basics of Python using basic traditional forecasting techniques and shows how machine learning is revolutionizing the forecasting domain. Nicolas has done an outstanding job explaining a technical subject in an easily accessible way. A must-read for any supply chain professional." Professor Bram Desmet - CEO Solventure "This book is before anything a practical and business-oriented "DIY" user manual to help planners move into 21st-century demand planning. The breakthrough comes from several tools and techniques available to all, and which thanks to Nicolas' precise and concrete explanations can now be implemented in real business environments by any "normal" planner. I can confirm that Nicolas' learnings are based on real-life experience and can tremendously help on improving top and bottom lines." Henri-Xavier Benoist - VP Supply Chain Bridegstone EMEA
Author | : John E. Boylan |
Publisher | : John Wiley & Sons |
Total Pages | : 403 |
Release | : 2021-06-02 |
Genre | : Medical |
ISBN | : 1119135303 |
INTERMITTENT DEMAND FORECASTING The first text to focus on the methods and approaches of intermittent, rather than fast, demand forecasting Intermittent Demand Forecasting is for anyone who is interested in improving forecasts of intermittent demand products, and enhancing the management of inventories. Whether you are a practitioner, at the sharp end of demand planning, a software designer, a student, an academic teaching operational research or operations management courses, or a researcher in this field, we hope that the book will inspire you to rethink demand forecasting. If you do so, then you can contribute towards significant economic and environmental benefits. No prior knowledge of intermittent demand forecasting or inventory management is assumed in this book. The key formulae are accompanied by worked examples to show how they can be implemented in practice. For those wishing to understand the theory in more depth, technical notes are provided at the end of each chapter, as well as an extensive and up-to-date collection of references for further study. Software developments are reviewed, to give an appreciation of the current state of the art in commercial and open source software. “Intermittent demand forecasting may seem like a specialized area but actually is at the center of sustainability efforts to consume less and to waste less. Boylan and Syntetos have done a superb job in showing how improvements in inventory management are pivotal in achieving this. Their book covers both the theory and practice of intermittent demand forecasting and my prediction is that it will fast become the bible of the field.” —Spyros Makridakis, Professor, University of Nicosia, and Director, Institute for the Future and the Makridakis Open Forecasting Center (MOFC). “We have been able to support our clients by adopting many of the ideas discussed in this excellent book, and implementing them in our software. I am sure that these ideas will be equally helpful for other supply chain software vendors and for companies wanting to update and upgrade their capabilities in forecasting and inventory management.” —Suresh Acharya, VP, Research and Development, Blue Yonder. “As product variants proliferate and the pace of business quickens, more and more items have intermittent demand. Boylan and Syntetos have long been leaders in extending forecasting and inventory methods to accommodate this new reality. Their book gathers and clarifies decades of research in this area, and explains how practitioners can exploit this knowledge to make their operations more efficient and effective.” —Thomas R. Willemain, Professor Emeritus, Rensselaer Polytechnic Institute.