Forecasting Expected Returns In The Financial Markets
Download Forecasting Expected Returns In The Financial Markets full books in PDF, epub, and Kindle. Read online free Forecasting Expected Returns In The Financial Markets ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Stephen Satchell |
Publisher | : Elsevier |
Total Pages | : 299 |
Release | : 2011-04-08 |
Genre | : Business & Economics |
ISBN | : 0080550673 |
Forecasting returns is as important as forecasting volatility in multiple areas of finance. This topic, essential to practitioners, is also studied by academics. In this new book, Dr Stephen Satchell brings together a collection of leading thinkers and practitioners from around the world who address this complex problem using the latest quantitative techniques.*Forecasting expected returns is an essential aspect of finance and highly technical *The first collection of papers to present new and developing techniques *International authors present both academic and practitioner perspectives
Author | : Stephen Satchell |
Publisher | : Elsevier |
Total Pages | : 428 |
Release | : 2011-02-24 |
Genre | : Business & Economics |
ISBN | : 0080471420 |
Forecasting Volatility in the Financial Markets, Third Edition assumes that the reader has a firm grounding in the key principles and methods of understanding volatility measurement and builds on that knowledge to detail cutting-edge modelling and forecasting techniques. It provides a survey of ways to measure risk and define the different models of volatility and return. Editors John Knight and Stephen Satchell have brought together an impressive array of contributors who present research from their area of specialization related to volatility forecasting. Readers with an understanding of volatility measures and risk management strategies will benefit from this collection of up-to-date chapters on the latest techniques in forecasting volatility. Chapters new to this third edition:* What good is a volatility model? Engle and Patton* Applications for portfolio variety Dan diBartolomeo* A comparison of the properties of realized variance for the FTSE 100 and FTSE 250 equity indices Rob Cornish* Volatility modeling and forecasting in finance Xiao and Aydemir* An investigation of the relative performance of GARCH models versus simple rules in forecasting volatility Thomas A. Silvey - Leading thinkers present newest research on volatility forecasting - International authors cover a broad array of subjects related to volatility forecasting - Assumes basic knowledge of volatility, financial mathematics, and modelling
Author | : Jon Danielsson |
Publisher | : John Wiley & Sons |
Total Pages | : 307 |
Release | : 2011-04-20 |
Genre | : Business & Economics |
ISBN | : 1119977118 |
Financial Risk Forecasting is a complete introduction to practical quantitative risk management, with a focus on market risk. Derived from the authors teaching notes and years spent training practitioners in risk management techniques, it brings together the three key disciplines of finance, statistics and modeling (programming), to provide a thorough grounding in risk management techniques. Written by renowned risk expert Jon Danielsson, the book begins with an introduction to financial markets and market prices, volatility clusters, fat tails and nonlinear dependence. It then goes on to present volatility forecasting with both univatiate and multivatiate methods, discussing the various methods used by industry, with a special focus on the GARCH family of models. The evaluation of the quality of forecasts is discussed in detail. Next, the main concepts in risk and models to forecast risk are discussed, especially volatility, value-at-risk and expected shortfall. The focus is both on risk in basic assets such as stocks and foreign exchange, but also calculations of risk in bonds and options, with analytical methods such as delta-normal VaR and duration-normal VaR and Monte Carlo simulation. The book then moves on to the evaluation of risk models with methods like backtesting, followed by a discussion on stress testing. The book concludes by focussing on the forecasting of risk in very large and uncommon events with extreme value theory and considering the underlying assumptions behind almost every risk model in practical use – that risk is exogenous – and what happens when those assumptions are violated. Every method presented brings together theoretical discussion and derivation of key equations and a discussion of issues in practical implementation. Each method is implemented in both MATLAB and R, two of the most commonly used mathematical programming languages for risk forecasting with which the reader can implement the models illustrated in the book. The book includes four appendices. The first introduces basic concepts in statistics and financial time series referred to throughout the book. The second and third introduce R and MATLAB, providing a discussion of the basic implementation of the software packages. And the final looks at the concept of maximum likelihood, especially issues in implementation and testing. The book is accompanied by a website - www.financialriskforecasting.com – which features downloadable code as used in the book.
Author | : John H. Cochrane |
Publisher | : Now Publishers Inc |
Total Pages | : 117 |
Release | : 2005 |
Genre | : Business & Economics |
ISBN | : 1933019158 |
Financial Markets and the Real Economy reviews the current academic literature on the macroeconomics of finance.
Author | : Emmanuel Jurczenko |
Publisher | : John Wiley & Sons |
Total Pages | : 460 |
Release | : 2020-10-06 |
Genre | : Business & Economics |
ISBN | : 1786305445 |
This new edited volume consists of a collection of original articles written by leading financial economists and industry experts in the area of machine learning for asset management. The chapters introduce the reader to some of the latest research developments in the area of equity, multi-asset and factor investing. Each chapter deals with new methods for return and risk forecasting, stock selection, portfolio construction, performance attribution and transaction costs modeling. This volume will be of great help to portfolio managers, asset owners and consultants, as well as academics and students who want to improve their knowledge of machine learning in asset management.
Author | : Wayne Ferson |
Publisher | : MIT Press |
Total Pages | : 497 |
Release | : 2019-03-12 |
Genre | : Business & Economics |
ISBN | : 0262039370 |
An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.
Author | : Ser-Huang Poon |
Publisher | : John Wiley & Sons |
Total Pages | : 236 |
Release | : 2005-08-19 |
Genre | : Business & Economics |
ISBN | : 0470856157 |
Financial market volatility forecasting is one of today's most important areas of expertise for professionals and academics in investment, option pricing, and financial market regulation. While many books address financial market modelling, no single book is devoted primarily to the exploration of volatility forecasting and the practical use of forecasting models. A Practical Guide to Forecasting Financial Market Volatility provides practical guidance on this vital topic through an in-depth examination of a range of popular forecasting models. Details are provided on proven techniques for building volatility models, with guide-lines for actually using them in forecasting applications.
Author | : Graham Elliott |
Publisher | : Elsevier |
Total Pages | : 667 |
Release | : 2013-08-23 |
Genre | : Business & Economics |
ISBN | : 0444627405 |
The highly prized ability to make financial plans with some certainty about the future comes from the core fields of economics. In recent years the availability of more data, analytical tools of greater precision, and ex post studies of business decisions have increased demand for information about economic forecasting. Volumes 2A and 2B, which follows Nobel laureate Clive Granger's Volume 1 (2006), concentrate on two major subjects. Volume 2A covers innovations in methodologies, specifically macroforecasting and forecasting financial variables. Volume 2B investigates commercial applications, with sections on forecasters' objectives and methodologies. Experts provide surveys of a large range of literature scattered across applied and theoretical statistics journals as well as econometrics and empirical economics journals. The Handbook of Economic Forecasting Volumes 2A and 2B provide a unique compilation of chapters giving a coherent overview of forecasting theory and applications in one place and with up-to-date accounts of all major conceptual issues. - Focuses on innovation in economic forecasting via industry applications - Presents coherent summaries of subjects in economic forecasting that stretch from methodologies to applications - Makes details about economic forecasting accessible to scholars in fields outside economics
Author | : Stephen Satchell |
Publisher | : Springer |
Total Pages | : 416 |
Release | : 2016-05-18 |
Genre | : Science |
ISBN | : 1137554177 |
Over the last 20 years hedge funds and derivatives have fluctuated in reputational terms; they have been blamed for the global financial crisis and been praised for the provision of liquidity in troubled times. Both topics are rather under-researched due to a combination of data and secrecy issues. This book is a collection of papers celebrating 20 years of the Journal of Derivatives and Hedge Funds (JDHF). The 18 papers included in this volume represent a small sample of influential papers included during the life of the Journal, representing industry-orientated research in these areas. With a Preface from co-editor of the journal Stephen Satchell, the first part of the collection focuses on hedge funds and the second on markets, prices and products.
Author | : Rajendra Akerkar |
Publisher | : Jones & Bartlett Publishers |
Total Pages | : 375 |
Release | : 2009-08-25 |
Genre | : Computers |
ISBN | : 1449662706 |
A knowledge-based system (KBS) is a system that uses artificial intelligence techniques in problem-solving processes to support human decision-making, learning, and action. Ideal for advanced-undergraduate and graduate students, as well as business professionals, this text is designed to help users develop an appreciation of KBS and their architecture and understand a broad variety of knowledge-based techniques for decision support and planning. It assumes basic computer science skills and a math background that includes set theory, relations, elementary probability, and introductory concepts of artificial intelligence. Each of the 12 chapters is designed to be modular, providing instructors with the flexibility to model the book to their own course needs. Exercises are incorporated throughout the text to highlight certain aspects of the material presented and to simulate thought and discussion. A comprehensive text and resource, Knowledge-Based Systems provides access to the most current information in KBS and new artificial intelligences, as well as neural networks, fuzzy logic, genetic algorithms, and soft systems.