First Semester In Numerical Analysis With Julia
Download First Semester In Numerical Analysis With Julia full books in PDF, epub, and Kindle. Read online free First Semester In Numerical Analysis With Julia ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Giray Ökten |
Publisher | : |
Total Pages | : 0 |
Release | : |
Genre | : Analysis |
ISBN | : |
First Semester in Numerical Analysis with Julia presents the theory and methods, together with the implementation of the algorithms using the Julia programming language (version 1.1.0). The book covers computer arithmetic, root-finding, numerical quadrature and differentiation, and approximation theory. The reader is expected to have studied calculus and linear algebra. Some familiarity with a programming language is beneficial, but not required. The programming language Julia will be introduced in the book. The simplicity of Julia allows bypassing the pseudocode and writing a computer code directly after the description of a method while minimizing the distraction the presentation of a computer code might cause to the flow of the main narrative.
Author | : Yoni Nazarathy |
Publisher | : Springer Nature |
Total Pages | : 527 |
Release | : 2021-09-04 |
Genre | : Computers |
ISBN | : 3030709019 |
This monograph uses the Julia language to guide the reader through an exploration of the fundamental concepts of probability and statistics, all with a view of mastering machine learning, data science, and artificial intelligence. The text does not require any prior statistical knowledge and only assumes a basic understanding of programming and mathematical notation. It is accessible to practitioners and researchers in data science, machine learning, bio-statistics, finance, or engineering who may wish to solidify their knowledge of probability and statistics. The book progresses through ten independent chapters starting with an introduction of Julia, and moving through basic probability, distributions, statistical inference, regression analysis, machine learning methods, and the use of Monte Carlo simulation for dynamic stochastic models. Ultimately this text introduces the Julia programming language as a computational tool, uniquely addressing end-users rather than developers. It makes heavy use of over 200 code examples to illustrate dozens of key statistical concepts. The Julia code, written in a simple format with parameters that can be easily modified, is also available for download from the book’s associated GitHub repository online. See what co-creators of the Julia language are saying about the book: Professor Alan Edelman, MIT: With “Statistics with Julia”, Yoni and Hayden have written an easy to read, well organized, modern introduction to statistics. The code may be looked at, and understood on the static pages of a book, or even better, when running live on a computer. Everything you need is here in one nicely written self-contained reference. Dr. Viral Shah, CEO of Julia Computing: Yoni and Hayden provide a modern way to learn statistics with the Julia programming language. This book has been perfected through iteration over several semesters in the classroom. It prepares the reader with two complementary skills - statistical reasoning with hands on experience and working with large datasets through training in Julia.
Author | : Justin Solomon |
Publisher | : CRC Press |
Total Pages | : 400 |
Release | : 2015-06-24 |
Genre | : Computers |
ISBN | : 1482251892 |
Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig
Author | : Anne Greenbaum |
Publisher | : Princeton University Press |
Total Pages | : 471 |
Release | : 2012-04-01 |
Genre | : Mathematics |
ISBN | : 1400842670 |
A rigorous and comprehensive introduction to numerical analysis Numerical Methods provides a clear and concise exploration of standard numerical analysis topics, as well as nontraditional ones, including mathematical modeling, Monte Carlo methods, Markov chains, and fractals. Filled with appealing examples that will motivate students, the textbook considers modern application areas, such as information retrieval and animation, and classical topics from physics and engineering. Exercises use MATLAB and promote understanding of computational results. The book gives instructors the flexibility to emphasize different aspects—design, analysis, or computer implementation—of numerical algorithms, depending on the background and interests of students. Designed for upper-division undergraduates in mathematics or computer science classes, the textbook assumes that students have prior knowledge of linear algebra and calculus, although these topics are reviewed in the text. Short discussions of the history of numerical methods are interspersed throughout the chapters. The book also includes polynomial interpolation at Chebyshev points, use of the MATLAB package Chebfun, and a section on the fast Fourier transform. Supplementary materials are available online. Clear and concise exposition of standard numerical analysis topics Explores nontraditional topics, such as mathematical modeling and Monte Carlo methods Covers modern applications, including information retrieval and animation, and classical applications from physics and engineering Promotes understanding of computational results through MATLAB exercises Provides flexibility so instructors can emphasize mathematical or applied/computational aspects of numerical methods or a combination Includes recent results on polynomial interpolation at Chebyshev points and use of the MATLAB package Chebfun Short discussions of the history of numerical methods interspersed throughout Supplementary materials available online
Author | : Ben Lauwens |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 301 |
Release | : 2019-04-05 |
Genre | : Computers |
ISBN | : 1492044989 |
If you’re just learning how to program, Julia is an excellent JIT-compiled, dynamically typed language with a clean syntax. This hands-on guide uses Julia 1.0 to walk you through programming one step at a time, beginning with basic programming concepts before moving on to more advanced capabilities, such as creating new types and multiple dispatch. Designed from the beginning for high performance, Julia is a general-purpose language ideal for not only numerical analysis and computational science but also web programming and scripting. Through exercises in each chapter, you’ll try out programming concepts as you learn them. Think Julia is perfect for students at the high school or college level as well as self-learners and professionals who need to learn programming basics. Start with the basics, including language syntax and semantics Get a clear definition of each programming concept Learn about values, variables, statements, functions, and data structures in a logical progression Discover how to work with files and databases Understand types, methods, and multiple dispatch Use debugging techniques to fix syntax, runtime, and semantic errors Explore interface design and data structures through case studies
Author | : Cleve B. Moler |
Publisher | : SIAM |
Total Pages | : 340 |
Release | : 2010-08-12 |
Genre | : Computers |
ISBN | : 0898716608 |
A revised textbook for introductory courses in numerical methods, MATLAB and technical computing, which emphasises the use of mathematical software.
Author | : Parviz Moin |
Publisher | : Cambridge University Press |
Total Pages | : 257 |
Release | : 2010-08-23 |
Genre | : Technology & Engineering |
ISBN | : 1139489550 |
Since the original publication of this book, available computer power has increased greatly. Today, scientific computing is playing an ever more prominent role as a tool in scientific discovery and engineering analysis. In this second edition, the key addition is an introduction to the finite element method. This is a widely used technique for solving partial differential equations (PDEs) in complex domains. This text introduces numerical methods and shows how to develop, analyse, and use them. Complete MATLAB programs for all the worked examples are now available at www.cambridge.org/Moin, and more than 30 exercises have been added. This thorough and practical book is intended as a first course in numerical analysis, primarily for new graduate students in engineering and physical science. Along with mastering the fundamentals of numerical methods, students will learn to write their own computer programs using standard numerical methods.
Author | : Giray Ökten |
Publisher | : Springer Nature |
Total Pages | : 152 |
Release | : 2020-10-15 |
Genre | : Mathematics |
ISBN | : 3030560708 |
This undergraduate textbook presents an inquiry-based learning course in stochastic models and computing designed to serve as a first course in probability. Its modular structure complements a traditional lecture format, introducing new topics chapter by chapter with accompanying projects for group collaboration. The text addresses probability axioms leading to Bayes’ theorem, discrete and continuous random variables, Markov chains, and Brownian motion, as well as applications including randomized algorithms, randomized surveys, Benford’s law, and Monte Carlo methods. Adopting a unique application-driven approach to better study probability in action, the book emphasizes data, simulation, and games to strengthen reader insight and intuition while proving theorems. Additionally, the text incorporates codes and exercises in the Julia programming language to further promote a hands-on focus in modelling. Students should have prior knowledge of single variable calculus. Giray Ökten received his PhD from Claremont Graduate University. He has held academic positions at University of Alaska Fairbanks, Ball State University, and Florida State University. He received a Fulbright U.S. Scholar award in 2015. He is the author of an open access textbook in numerical analysis, First Semester in Numerical Analysis with Julia, published by Florida State University Libraries, and a co-author of a children’s math book, The Mathematical Investigations of Dr. O and Arya, published by Tumblehome. His research interests include Monte Carlo methods and computational finance.
Author | : Kenneth Lange |
Publisher | : SIAM |
Total Pages | : 227 |
Release | : 2020-05-04 |
Genre | : Mathematics |
ISBN | : 1611976170 |
Algorithms are a dominant force in modern culture, and every indication is that they will become more pervasive, not less. The best algorithms are undergirded by beautiful mathematics. This text cuts across discipline boundaries to highlight some of the most famous and successful algorithms. Readers are exposed to the principles behind these examples and guided in assembling complex algorithms from simpler building blocks. Written in clear, instructive language within the constraints of mathematical rigor, Algorithms from THE BOOK includes a large number of classroom-tested exercises at the end of each chapter. The appendices cover background material often omitted from undergraduate courses. Most of the algorithm descriptions are accompanied by Julia code, an ideal language for scientific computing. This code is immediately available for experimentation. Algorithms from THE BOOK is aimed at first-year graduate and advanced undergraduate students. It will also serve as a convenient reference for professionals throughout the mathematical sciences, physical sciences, engineering, and the quantitative sectors of the biological and social sciences.
Author | : Stanley Humphries, Jr. |
Publisher | : CRC Press |
Total Pages | : 400 |
Release | : 2020-09-23 |
Genre | : Technology & Engineering |
ISBN | : 1000102106 |
Field Solutions on Computers covers a broad range of practical applications involving electric and magnetic fields. The text emphasizes finite-element techniques to solve real-world problems in research and industry. After introducing numerical methods with a thorough treatment of electrostatics, the book moves in a structured sequence to advanced topics. These include magnetostatics with non-linear materials, permanent magnet devices, RF heating, eddy current analysis, electromagnetic pulses, microwave structures, and wave scattering. The mathematical derivations are supplemented with chapter exercises and comprehensive reviews of the underlying physics. The book also covers essential supporting techniques such as mesh generation, interpolation, sparse matrix inversions, and advanced plotting routines.