First Passage Times And Other Analysis Of Continuous Parameter Markov Chains
Download First Passage Times And Other Analysis Of Continuous Parameter Markov Chains full books in PDF, epub, and Kindle. Read online free First Passage Times And Other Analysis Of Continuous Parameter Markov Chains ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Hal Caswell |
Publisher | : Springer |
Total Pages | : 308 |
Release | : 2019-04-02 |
Genre | : Social Science |
ISBN | : 3030105342 |
This open access book shows how to use sensitivity analysis in demography. It presents new methods for individuals, cohorts, and populations, with applications to humans, other animals, and plants. The analyses are based on matrix formulations of age-classified, stage-classified, and multistate population models. Methods are presented for linear and nonlinear, deterministic and stochastic, and time-invariant and time-varying cases. Readers will discover results on the sensitivity of statistics of longevity, life disparity, occupancy times, the net reproductive rate, and statistics of Markov chain models in demography. They will also see applications of sensitivity analysis to population growth rates, stable population structures, reproductive value, equilibria under immigration and nonlinearity, and population cycles. Individual stochasticity is a theme throughout, with a focus that goes beyond expected values to include variances in demographic outcomes. The calculations are easily and accurately implemented in matrix-oriented programming languages such as Matlab or R. Sensitivity analysis will help readers create models to predict the effect of future changes, to evaluate policy effects, and to identify possible evolutionary responses to the environment. Complete with many examples of the application, the book will be of interest to researchers and graduate students in human demography and population biology. The material will also appeal to those in mathematical biology and applied mathematics.
Author | : |
Publisher | : |
Total Pages | : 952 |
Release | : 1987 |
Genre | : Aeronautics |
ISBN | : |
Author | : Gerardo Rubino |
Publisher | : Cambridge University Press |
Total Pages | : 287 |
Release | : 2014-06-12 |
Genre | : Business & Economics |
ISBN | : 1107007577 |
Covers fundamental and applied results of Markov chain analysis for the evaluation of dependability metrics, for graduate students and researchers.
Author | : Richard Serfozo |
Publisher | : Springer Science & Business Media |
Total Pages | : 452 |
Release | : 2009-01-24 |
Genre | : Mathematics |
ISBN | : 3540893326 |
Stochastic processes are mathematical models of random phenomena that evolve according to prescribed dynamics. Processes commonly used in applications are Markov chains in discrete and continuous time, renewal and regenerative processes, Poisson processes, and Brownian motion. This volume gives an in-depth description of the structure and basic properties of these stochastic processes. A main focus is on equilibrium distributions, strong laws of large numbers, and ordinary and functional central limit theorems for cost and performance parameters. Although these results differ for various processes, they have a common trait of being limit theorems for processes with regenerative increments. Extensive examples and exercises show how to formulate stochastic models of systems as functions of a system’s data and dynamics, and how to represent and analyze cost and performance measures. Topics include stochastic networks, spatial and space-time Poisson processes, queueing, reversible processes, simulation, Brownian approximations, and varied Markovian models. The technical level of the volume is between that of introductory texts that focus on highlights of applied stochastic processes, and advanced texts that focus on theoretical aspects of processes.
Author | : Herman Rubin |
Publisher | : IMS |
Total Pages | : 442 |
Release | : 2004 |
Genre | : Bayesian statistical decision theory |
ISBN | : 9780940600614 |
Author | : Howard M. Taylor |
Publisher | : Academic Press |
Total Pages | : 410 |
Release | : 2014-05-10 |
Genre | : Mathematics |
ISBN | : 1483269272 |
An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.
Author | : |
Publisher | : |
Total Pages | : 760 |
Release | : |
Genre | : Science |
ISBN | : |
Author | : J. R. Norris |
Publisher | : Cambridge University Press |
Total Pages | : 260 |
Release | : 1998-07-28 |
Genre | : Mathematics |
ISBN | : 9780521633963 |
Markov chains are central to the understanding of random processes. This is not only because they pervade the applications of random processes, but also because one can calculate explicitly many quantities of interest. This textbook, aimed at advanced undergraduate or MSc students with some background in basic probability theory, focuses on Markov chains and quickly develops a coherent and rigorous theory whilst showing also how actually to apply it. Both discrete-time and continuous-time chains are studied. A distinguishing feature is an introduction to more advanced topics such as martingales and potentials in the established context of Markov chains. There are applications to simulation, economics, optimal control, genetics, queues and many other topics, and exercises and examples drawn both from theory and practice. It will therefore be an ideal text either for elementary courses on random processes or those that are more oriented towards applications.
Author | : John G Kemeny |
Publisher | : |
Total Pages | : 0 |
Release | : 1960 |
Genre | : Probabilities |
ISBN | : |
Author | : Odd Aalen |
Publisher | : Springer Science & Business Media |
Total Pages | : 550 |
Release | : 2008-09-16 |
Genre | : Mathematics |
ISBN | : 038768560X |
The aim of this book is to bridge the gap between standard textbook models and a range of models where the dynamic structure of the data manifests itself fully. The common denominator of such models is stochastic processes. The authors show how counting processes, martingales, and stochastic integrals fit very nicely with censored data. Beginning with standard analyses such as Kaplan-Meier plots and Cox regression, the presentation progresses to the additive hazard model and recurrent event data. Stochastic processes are also used as natural models for individual frailty; they allow sensible interpretations of a number of surprising artifacts seen in population data. The stochastic process framework is naturally connected to causality. The authors show how dynamic path analyses can incorporate many modern causality ideas in a framework that takes the time aspect seriously. To make the material accessible to the reader, a large number of practical examples, mainly from medicine, are developed in detail. Stochastic processes are introduced in an intuitive and non-technical manner. The book is aimed at investigators who use event history methods and want a better understanding of the statistical concepts. It is suitable as a textbook for graduate courses in statistics and biostatistics.