First Order Categorical Logic
Author | : M. Makkai |
Publisher | : Springer |
Total Pages | : 317 |
Release | : 2006-11-15 |
Genre | : Mathematics |
ISBN | : 3540371001 |
Download First Order Categorical Logic full books in PDF, epub, and Kindle. Read online free First Order Categorical Logic ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : M. Makkai |
Publisher | : Springer |
Total Pages | : 317 |
Release | : 2006-11-15 |
Genre | : Mathematics |
ISBN | : 3540371001 |
Author | : J. Lambek |
Publisher | : Cambridge University Press |
Total Pages | : 308 |
Release | : 1988-03-25 |
Genre | : Mathematics |
ISBN | : 9780521356534 |
Part I indicates that typed-calculi are a formulation of higher-order logic, and cartesian closed categories are essentially the same. Part II demonstrates that another formulation of higher-order logic is closely related to topos theory.
Author | : B. Jacobs |
Publisher | : Gulf Professional Publishing |
Total Pages | : 784 |
Release | : 2001-05-10 |
Genre | : Computers |
ISBN | : 9780444508539 |
This book is an attempt to give a systematic presentation of both logic and type theory from a categorical perspective, using the unifying concept of fibred category. Its intended audience consists of logicians, type theorists, category theorists and (theoretical) computer scientists.
Author | : R. Goldblatt |
Publisher | : Elsevier |
Total Pages | : 569 |
Release | : 2014-06-28 |
Genre | : Mathematics |
ISBN | : 148329921X |
The first of its kind, this book presents a widely accessible exposition of topos theory, aimed at the philosopher-logician as well as the mathematician. It is suitable for individual study or use in class at the graduate level (it includes 500 exercises). It begins with a fully motivated introduction to category theory itself, moving always from the particular example to the abstract concept. It then introduces the notion of elementary topos, with a wide range of examples and goes on to develop its theory in depth, and to elicit in detail its relationship to Kripke's intuitionistic semantics, models of classical set theory and the conceptual framework of sheaf theory (``localization'' of truth). Of particular interest is a Dedekind-cuts style construction of number systems in topoi, leading to a model of the intuitionistic continuum in which a ``Dedekind-real'' becomes represented as a ``continuously-variable classical real number''.The second edition contains a new chapter, entitled Logical Geometry, which introduces the reader to the theory of geometric morphisms of Grothendieck topoi, and its model-theoretic rendering by Makkai and Reyes. The aim of this chapter is to explain why Deligne's theorem about the existence of points of coherent topoi is equivalent to the classical Completeness theorem for ``geometric'' first-order formulae.
Author | : Boris Zilber |
Publisher | : American Mathematical Soc. |
Total Pages | : 132 |
Release | : |
Genre | : Mathematics |
ISBN | : 9780821897454 |
The 1970s saw the appearance and development in categoricity theory of a tendency to focus on the study and description of uncountably categorical theories in various special classes defined by natural algebraic or syntactic conditions. There have thus been studies of uncountably categorical theories of groups and rings, theories of a one-place function, universal theories of semigroups, quasivarieties categorical in infinite powers, and Horn theories. In Uncountably Categorical Theories , this research area is referred to as the special classification theory of categoricity. Zilber's goal is to develop a structural theory of categoricity, using methods and results of the special classification theory, and to construct on this basis a foundation for a general classification theory of categoricity, that is, a theory aimed at describing large classes of uncountably categorical structures not restricted by any syntactic or algebraic conditions.
Author | : P. T. Johnstone |
Publisher | : Oxford University Press |
Total Pages | : 836 |
Release | : 2002-09-12 |
Genre | : Computers |
ISBN | : 9780198515982 |
Topos Theory is a subject that stands at the junction of geometry, mathematical logic and theoretical computer science, and it derives much of its power from the interplay of ideas drawn from these different areas. Because of this, an account of topos theory which approaches the subject from one particular direction can only hope to give a partial picture; the aim of this compendium is to present as comprehensive an account as possible of all the main approaches and to thereby demonstrate the overall unity of the subject. The material is organized in such a way that readers interested in following a particular line of approach may do so by starting at an appropriate point in the text.
Author | : Elaine M. Landry |
Publisher | : Oxford University Press |
Total Pages | : 486 |
Release | : 2017 |
Genre | : Mathematics |
ISBN | : 019874899X |
This is the first volume on category theory for a broad philosophical readership. It is designed to show the interest and significance of category theory for a range of philosophical interests: mathematics, proof theory, computation, cognition, scientific modelling, physics, ontology, the structure of the world. Each chapter is written by either a category-theorist or a philosopher working in one of the represented areas, in an accessible waythat builds on the concepts that are already familiar to philosophers working in these areas.
Author | : Tom Leinster |
Publisher | : Cambridge University Press |
Total Pages | : 193 |
Release | : 2014-07-24 |
Genre | : Mathematics |
ISBN | : 1107044243 |
A short introduction ideal for students learning category theory for the first time.
Author | : Maria Cristina Pedicchio |
Publisher | : Cambridge University Press |
Total Pages | : 452 |
Release | : 2004 |
Genre | : Mathematics |
ISBN | : 9780521834148 |
Publisher Description
Author | : Benjamin C. Pierce |
Publisher | : MIT Press |
Total Pages | : 117 |
Release | : 1991-08-07 |
Genre | : Computers |
ISBN | : 0262326450 |
Basic Category Theory for Computer Scientists provides a straightforward presentation of the basic constructions and terminology of category theory, including limits, functors, natural transformations, adjoints, and cartesian closed categories. Category theory is a branch of pure mathematics that is becoming an increasingly important tool in theoretical computer science, especially in programming language semantics, domain theory, and concurrency, where it is already a standard language of discourse. Assuming a minimum of mathematical preparation, Basic Category Theory for Computer Scientists provides a straightforward presentation of the basic constructions and terminology of category theory, including limits, functors, natural transformations, adjoints, and cartesian closed categories. Four case studies illustrate applications of category theory to programming language design, semantics, and the solution of recursive domain equations. A brief literature survey offers suggestions for further study in more advanced texts. Contents Tutorial • Applications • Further Reading