Financial Decision Making Under Uncertainty
Author | : ANDERSON ANDERSON WEBSTER |
Publisher | : Academic Press |
Total Pages | : 314 |
Release | : 2014-06-28 |
Genre | : Business & Economics |
ISBN | : 1483294994 |
Financial Dec Making under Uncertainty
Download Financial Decision Making Under Uncertainty full books in PDF, epub, and Kindle. Read online free Financial Decision Making Under Uncertainty ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : ANDERSON ANDERSON WEBSTER |
Publisher | : Academic Press |
Total Pages | : 314 |
Release | : 2014-06-28 |
Genre | : Business & Economics |
ISBN | : 1483294994 |
Financial Dec Making under Uncertainty
Author | : Leonard C. MacLean |
Publisher | : World Scientific |
Total Pages | : 941 |
Release | : 2013 |
Genre | : Business & Economics |
ISBN | : 9814417351 |
This handbook in two parts covers key topics of the theory of financial decision making. Some of the papers discuss real applications or case studies as well. There are a number of new papers that have never been published before especially in Part II.Part I is concerned with Decision Making Under Uncertainty. This includes subsections on Arbitrage, Utility Theory, Risk Aversion and Static Portfolio Theory, and Stochastic Dominance. Part II is concerned with Dynamic Modeling that is the transition for static decision making to multiperiod decision making. The analysis starts with Risk Measures and then discusses Dynamic Portfolio Theory, Tactical Asset Allocation and Asset-Liability Management Using Utility and Goal Based Consumption-Investment Decision Models.A comprehensive set of problems both computational and review and mind expanding with many unsolved problems are in an accompanying problems book. The handbook plus the book of problems form a very strong set of materials for PhD and Masters courses both as the main or as supplementary text in finance theory, financial decision making and portfolio theory. For researchers, it is a valuable resource being an up to date treatment of topics in the classic books on these topics by Johnathan Ingersoll in 1988, and William Ziemba and Raymond Vickson in 1975 (updated 2 nd edition published in 2006).
Author | : Itzhak Gilboa |
Publisher | : Cambridge University Press |
Total Pages | : 216 |
Release | : 2009-03-16 |
Genre | : Business & Economics |
ISBN | : 052151732X |
This book describes the classical axiomatic theories of decision under uncertainty, as well as critiques thereof and alternative theories. It focuses on the meaning of probability, discussing some definitions and surveying their scope of applicability. The behavioral definition of subjective probability serves as a way to present the classical theories, culminating in Savage's theorem. The limitations of this result as a definition of probability lead to two directions - first, similar behavioral definitions of more general theories, such as non-additive probabilities and multiple priors, and second, cognitive derivations based on case-based techniques.
Author | : Richard Friberg |
Publisher | : MIT Press |
Total Pages | : 395 |
Release | : 2015-11-13 |
Genre | : Business & Economics |
ISBN | : 0262528193 |
A comprehensive framework for assessing strategies for managing risk and uncertainty, integrating theory and practice and synthesizing insights from many fields. This book offers a framework for making decisions under risk and uncertainty. Synthesizing research from economics, finance, decision theory, management, and other fields, the book provides a set of tools and a way of thinking that determines the relative merits of different strategies. It takes as its premise that we make better decisions if we use the whole toolkit of economics and related fields to inform our decision making. The text explores the distinction between risk and uncertainty and covers standard models of decision making under risk as well as more recent work on decision making under uncertainty, with a particular focus on strategic interaction. It also examines the implications of incomplete markets for managing under uncertainty. It presents four core strategies: a benchmark strategy (proceeding as if risk and uncertainty were low), a financial hedging strategy (valuable if there is much risk), an operational hedging strategy (valuable for conditions of much uncertainty), and a flexible strategy (valuable if there is much risk and/or uncertainty). The book then examines various aspects of these strategies in greater depth, building on empirical work in several different fields. Topics include price-setting, real options and Monte Carlo techniques, organizational structure, and behavioral biases. Many chapters include exercises and appendixes with additional material. The book can be used in graduate or advanced undergraduate courses in risk management, as a guide for researchers, or as a reference for management practitioners.
Author | : Antonio J. Conejo |
Publisher | : Springer Science & Business Media |
Total Pages | : 549 |
Release | : 2010-09-08 |
Genre | : Business & Economics |
ISBN | : 1441974210 |
Decision Making Under Uncertainty in Electricity Markets provides models and procedures to be used by electricity market agents to make informed decisions under uncertainty. These procedures rely on well established stochastic programming models, which make them efficient and robust. Particularly, these techniques allow electricity producers to derive offering strategies for the pool and contracting decisions in the futures market. Retailers use these techniques to derive selling prices to clients and energy procurement strategies through the pool, the futures market and bilateral contracting. Using the proposed models, consumers can derive the best energy procurement strategies using the available trading floors. The market operator can use the techniques proposed in this book to clear simultaneously energy and reserve markets promoting efficiency and equity. The techniques described in this book are of interest for professionals working on energy markets, and for graduate students in power engineering, applied mathematics, applied economics, and operations research.
Author | : Vincent A. W. J. Marchau |
Publisher | : Springer |
Total Pages | : 408 |
Release | : 2019-04-04 |
Genre | : Business & Economics |
ISBN | : 3030052524 |
This open access book focuses on both the theory and practice associated with the tools and approaches for decisionmaking in the face of deep uncertainty. It explores approaches and tools supporting the design of strategic plans under deep uncertainty, and their testing in the real world, including barriers and enablers for their use in practice. The book broadens traditional approaches and tools to include the analysis of actors and networks related to the problem at hand. It also shows how lessons learned in the application process can be used to improve the approaches and tools used in the design process. The book offers guidance in identifying and applying appropriate approaches and tools to design plans, as well as advice on implementing these plans in the real world. For decisionmakers and practitioners, the book includes realistic examples and practical guidelines that should help them understand what decisionmaking under deep uncertainty is and how it may be of assistance to them. Decision Making under Deep Uncertainty: From Theory to Practice is divided into four parts. Part I presents five approaches for designing strategic plans under deep uncertainty: Robust Decision Making, Dynamic Adaptive Planning, Dynamic Adaptive Policy Pathways, Info-Gap Decision Theory, and Engineering Options Analysis. Each approach is worked out in terms of its theoretical foundations, methodological steps to follow when using the approach, latest methodological insights, and challenges for improvement. In Part II, applications of each of these approaches are presented. Based on recent case studies, the practical implications of applying each approach are discussed in depth. Part III focuses on using the approaches and tools in real-world contexts, based on insights from real-world cases. Part IV contains conclusions and a synthesis of the lessons that can be drawn for designing, applying, and implementing strategic plans under deep uncertainty, as well as recommendations for future work. The publication of this book has been funded by the Radboud University, the RAND Corporation, Delft University of Technology, and Deltares.
Author | : David E. Bell |
Publisher | : Thomson South-Western |
Total Pages | : 228 |
Release | : 1995 |
Genre | : Business & Economics |
ISBN | : |
These authors draw on nearly 50 years of combined teaching and consulting experience to give readers a straightforward yet systematic approach for making estimates about the likelihood and consequences of future events -- and then using those assessments to arrive at sound decisions. The book's real-world cases, supplemented with expository text and spreadsheets, help readers master such techniques as decision trees and simulation, such concepts as probability, the value of information, and strategic gaming; and such applications as inventory stocking problems, bidding situations, and negotiating.
Author | : Haim Levy |
Publisher | : Springer Science & Business Media |
Total Pages | : 439 |
Release | : 2006-08-25 |
Genre | : Business & Economics |
ISBN | : 0387293116 |
This book is devoted to investment decision-making under uncertainty. The book covers three basic approaches to this process: the stochastic dominance approach; the mean-variance approach; and the non-expected utility approach, focusing on prospect theory and its modified version, cumulative prospect theory. Each approach is discussed and compared. In addition, this volume examines cases in which stochastic dominance rules coincide with the mean-variance rule and considers how contradictions between these two approaches may occur.
Author | : Mykel J. Kochenderfer |
Publisher | : MIT Press |
Total Pages | : 350 |
Release | : 2015-07-24 |
Genre | : Computers |
ISBN | : 0262331713 |
An introduction to decision making under uncertainty from a computational perspective, covering both theory and applications ranging from speech recognition to airborne collision avoidance. Many important problems involve decision making under uncertainty—that is, choosing actions based on often imperfect observations, with unknown outcomes. Designers of automated decision support systems must take into account the various sources of uncertainty while balancing the multiple objectives of the system. This book provides an introduction to the challenges of decision making under uncertainty from a computational perspective. It presents both the theory behind decision making models and algorithms and a collection of example applications that range from speech recognition to aircraft collision avoidance. Focusing on two methods for designing decision agents, planning and reinforcement learning, the book covers probabilistic models, introducing Bayesian networks as a graphical model that captures probabilistic relationships between variables; utility theory as a framework for understanding optimal decision making under uncertainty; Markov decision processes as a method for modeling sequential problems; model uncertainty; state uncertainty; and cooperative decision making involving multiple interacting agents. A series of applications shows how the theoretical concepts can be applied to systems for attribute-based person search, speech applications, collision avoidance, and unmanned aircraft persistent surveillance. Decision Making Under Uncertainty unifies research from different communities using consistent notation, and is accessible to students and researchers across engineering disciplines who have some prior exposure to probability theory and calculus. It can be used as a text for advanced undergraduate and graduate students in fields including computer science, aerospace and electrical engineering, and management science. It will also be a valuable professional reference for researchers in a variety of disciplines.
Author | : Robert K. Dixit |
Publisher | : Princeton University Press |
Total Pages | : 484 |
Release | : 2012-07-14 |
Genre | : Business & Economics |
ISBN | : 1400830176 |
How should firms decide whether and when to invest in new capital equipment, additions to their workforce, or the development of new products? Why have traditional economic models of investment failed to explain the behavior of investment spending in the United States and other countries? In this book, Avinash Dixit and Robert Pindyck provide the first detailed exposition of a new theoretical approach to the capital investment decisions of firms, stressing the irreversibility of most investment decisions, and the ongoing uncertainty of the economic environment in which these decisions are made. In so doing, they answer important questions about investment decisions and the behavior of investment spending. This new approach to investment recognizes the option value of waiting for better (but never complete) information. It exploits an analogy with the theory of options in financial markets, which permits a much richer dynamic framework than was possible with the traditional theory of investment. The authors present the new theory in a clear and systematic way, and consolidate, synthesize, and extend the various strands of research that have come out of the theory. Their book shows the importance of the theory for understanding investment behavior of firms; develops the implications of this theory for industry dynamics and for government policy concerning investment; and shows how the theory can be applied to specific industries and to a wide variety of business problems.