Feature Selection For Data And Pattern Recognition
Download Feature Selection For Data And Pattern Recognition full books in PDF, epub, and Kindle. Read online free Feature Selection For Data And Pattern Recognition ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Urszula Stańczyk |
Publisher | : Springer |
Total Pages | : 0 |
Release | : 2016-09-24 |
Genre | : Technology & Engineering |
ISBN | : 9783662508459 |
This research book provides the reader with a selection of high-quality texts dedicated to current progress, new developments and research trends in feature selection for data and pattern recognition. Even though it has been the subject of interest for some time, feature selection remains one of actively pursued avenues of investigations due to its importance and bearing upon other problems and tasks. This volume points to a number of advances topically subdivided into four parts: estimation of importance of characteristic features, their relevance, dependencies, weighting and ranking; rough set approach to attribute reduction with focus on relative reducts; construction of rules and their evaluation; and data- and domain-oriented methodologies.
Author | : Huan Liu |
Publisher | : Springer Science & Business Media |
Total Pages | : 225 |
Release | : 2012-12-06 |
Genre | : Computers |
ISBN | : 1461556899 |
As computer power grows and data collection technologies advance, a plethora of data is generated in almost every field where computers are used. The com puter generated data should be analyzed by computers; without the aid of computing technologies, it is certain that huge amounts of data collected will not ever be examined, let alone be used to our advantages. Even with today's advanced computer technologies (e. g. , machine learning and data mining sys tems), discovering knowledge from data can still be fiendishly hard due to the characteristics of the computer generated data. Taking its simplest form, raw data are represented in feature-values. The size of a dataset can be measUJ·ed in two dimensions, number of features (N) and number of instances (P). Both Nand P can be enormously large. This enormity may cause serious problems to many data mining systems. Feature selection is one of the long existing methods that deal with these problems. Its objective is to select a minimal subset of features according to some reasonable criteria so that the original task can be achieved equally well, if not better. By choosing a minimal subset offeatures, irrelevant and redundant features are removed according to the criterion. When N is reduced, the data space shrinks and in a sense, the data set is now a better representative of the whole data population. If necessary, the reduction of N can also give rise to the reduction of P by eliminating duplicates.
Author | : Huan Liu |
Publisher | : CRC Press |
Total Pages | : 437 |
Release | : 2007-10-29 |
Genre | : Business & Economics |
ISBN | : 1584888792 |
Due to increasing demands for dimensionality reduction, research on feature selection has deeply and widely expanded into many fields, including computational statistics, pattern recognition, machine learning, data mining, and knowledge discovery. Highlighting current research issues, Computational Methods of Feature Selection introduces the
Author | : Huan Liu |
Publisher | : Springer Science & Business Media |
Total Pages | : 418 |
Release | : 2012-12-06 |
Genre | : Computers |
ISBN | : 1461557259 |
There is broad interest in feature extraction, construction, and selection among practitioners from statistics, pattern recognition, and data mining to machine learning. Data preprocessing is an essential step in the knowledge discovery process for real-world applications. This book compiles contributions from many leading and active researchers in this growing field and paints a picture of the state-of-art techniques that can boost the capabilities of many existing data mining tools. The objective of this collection is to increase the awareness of the data mining community about the research of feature extraction, construction and selection, which are currently conducted mainly in isolation. This book is part of our endeavor to produce a contemporary overview of modern solutions, to create synergy among these seemingly different branches, and to pave the way for developing meta-systems and novel approaches. Even with today's advanced computer technologies, discovering knowledge from data can still be fiendishly hard due to the characteristics of the computer generated data. Feature extraction, construction and selection are a set of techniques that transform and simplify data so as to make data mining tasks easier. Feature construction and selection can be viewed as two sides of the representation problem.
Author | : Zheng Alan Zhao |
Publisher | : CRC Press |
Total Pages | : 220 |
Release | : 2011-12-14 |
Genre | : Business & Economics |
ISBN | : 1439862109 |
Spectral Feature Selection for Data Mining introduces a novel feature selection technique that establishes a general platform for studying existing feature selection algorithms and developing new algorithms for emerging problems in real-world applications. This technique represents a unified framework for supervised, unsupervised, and semisupervise
Author | : Chi Hau Chen |
Publisher | : World Scientific |
Total Pages | : 1045 |
Release | : 1999-03-12 |
Genre | : Computers |
ISBN | : 9814497649 |
The very significant advances in computer vision and pattern recognition and their applications in the last few years reflect the strong and growing interest in the field as well as the many opportunities and challenges it offers. The second edition of this handbook represents both the latest progress and updated knowledge in this dynamic field. The applications and technological issues are particularly emphasized in this edition to reflect the wide applicability of the field in many practical problems. To keep the book in a single volume, it is not possible to retain all chapters of the first edition. However, the chapters of both editions are well written for permanent reference. This indispensable handbook will continue to serve as an authoritative and comprehensive guide in the field.
Author | : Om Prakash Jena |
Publisher | : John Wiley & Sons |
Total Pages | : 434 |
Release | : 2021-10-19 |
Genre | : Computers |
ISBN | : 1119818680 |
COMPUTATIONAL INTELLIGENCE and HEALTHCARE INFORMATICS The book provides the state-of-the-art innovation, research, design, and implements methodological and algorithmic solutions to data processing problems, designing and analysing evolving trends in health informatics, intelligent disease prediction, and computer-aided diagnosis. Computational intelligence (CI) refers to the ability of computers to accomplish tasks that are normally completed by intelligent beings such as humans and animals. With the rapid advance of technology, artificial intelligence (AI) techniques are being effectively used in the fields of health to improve the efficiency of treatments, avoid the risk of false diagnoses, make therapeutic decisions, and predict the outcome in many clinical scenarios. Modern health treatments are faced with the challenge of acquiring, analyzing and applying the large amount of knowledge necessary to solve complex problems. Computational intelligence in healthcare mainly uses computer techniques to perform clinical diagnoses and suggest treatments. In the present scenario of computing, CI tools present adaptive mechanisms that permit the understanding of data in difficult and changing environments. The desired results of CI technologies profit medical fields by assembling patients with the same types of diseases or fitness problems so that healthcare facilities can provide effectual treatments. This book starts with the fundamentals of computer intelligence and the techniques and procedures associated with it. Contained in this book are state-of-the-art methods of computational intelligence and other allied techniques used in the healthcare system, as well as advances in different CI methods that will confront the problem of effective data analysis and storage faced by healthcare institutions. The objective of this book is to provide researchers with a platform encompassing state-of-the-art innovations; research and design; implementation of methodological and algorithmic solutions to data processing problems; and the design and analysis of evolving trends in health informatics, intelligent disease prediction and computer-aided diagnosis. Audience The book is of interest to artificial intelligence and biomedical scientists, researchers, engineers and students in various settings such as pharmaceutical & biotechnology companies, virtual assistants developing companies, medical imaging & diagnostics centers, wearable device designers, healthcare assistance robot manufacturers, precision medicine testers, hospital management, and researchers working in healthcare system.
Author | : Urszula Stańczyk |
Publisher | : Springer |
Total Pages | : 334 |
Release | : 2017-11-16 |
Genre | : Technology & Engineering |
ISBN | : 3319675885 |
This book presents recent developments and research trends in the field of feature selection for data and pattern recognition, highlighting a number of latest advances. The field of feature selection is evolving constantly, providing numerous new algorithms, new solutions, and new applications. Some of the advances presented focus on theoretical approaches, introducing novel propositions highlighting and discussing properties of objects, and analysing the intricacies of processes and bounds on computational complexity, while others are dedicated to the specific requirements of application domains or the particularities of tasks waiting to be solved or improved. Divided into four parts – nature and representation of data; ranking and exploration of features; image, shape, motion, and audio detection and recognition; decision support systems, it is of great interest to a large section of researchers including students, professors and practitioners.
Author | : Sankar K. Pal |
Publisher | : CRC Press |
Total Pages | : 275 |
Release | : 2004-05-27 |
Genre | : Computers |
ISBN | : 1135436401 |
Pattern Recognition Algorithms for Data Mining addresses different pattern recognition (PR) tasks in a unified framework with both theoretical and experimental results. Tasks covered include data condensation, feature selection, case generation, clustering/classification, and rule generation and evaluation. This volume presents various theories, methodologies, and algorithms, using both classical approaches and hybrid paradigms. The authors emphasize large datasets with overlapping, intractable, or nonlinear boundary classes, and datasets that demonstrate granular computing in soft frameworks. Organized into eight chapters, the book begins with an introduction to PR, data mining, and knowledge discovery concepts. The authors analyze the tasks of multi-scale data condensation and dimensionality reduction, then explore the problem of learning with support vector machine (SVM). They conclude by highlighting the significance of granular computing for different mining tasks in a soft paradigm.
Author | : Niels da Vitoria Lobo |
Publisher | : Springer Science & Business Media |
Total Pages | : 1029 |
Release | : 2008-11-24 |
Genre | : Computers |
ISBN | : 3540896880 |
This book constitutes the refereed proceedings of the 12th International Workshop on Structural and Syntactic Pattern Recognition, SSPR 2008 and the 7th International Workshop on Statistical Techniques in Pattern Recognition, SPR 2008, held jointly in Orlando, FL, USA, in December 2008 as a satellite event of the 19th International Conference of Pattern Recognition, ICPR 2008. The 56 revised full papers and 42 revised poster papers presented together with the abstracts of 4 invited papers were carefully reviewed and selected from 175 submissions. The papers are organized in topical sections on graph-based methods, probabilistic and stochastic structural models for PR, image and video analysis, shape analysis, kernel methods, recognition and classification, applications, ensemble methods, feature selection, density estimation and clustering, computer vision and biometrics, pattern recognition and applications, pattern recognition, as well as feature selection and clustering.