Factorization Algebras in Quantum Field Theory

Factorization Algebras in Quantum Field Theory
Author: Kevin Costello
Publisher: Cambridge University Press
Total Pages: 399
Release: 2017
Genre: Mathematics
ISBN: 1107163102

This first volume develops factorization algebras with a focus upon examples exhibiting their use in field theory, which will be useful for researchers and graduates.

Factorization Algebras in Quantum Field Theory

Factorization Algebras in Quantum Field Theory
Author: Kevin Costello
Publisher: Cambridge University Press
Total Pages: 417
Release: 2021-09-23
Genre: Mathematics
ISBN: 1107163153

This second volume shows how factorization algebras arise from interacting field theories, both classical and quantum.

Lectures on Factorization Homology, ∞-Categories, and Topological Field Theories

Lectures on Factorization Homology, ∞-Categories, and Topological Field Theories
Author: Hiro Lee Tanaka
Publisher: Springer Nature
Total Pages: 84
Release: 2020-12-14
Genre: Science
ISBN: 3030611639

This book provides an informal and geodesic introduction to factorization homology, focusing on providing intuition through simple examples. Along the way, the reader is also introduced to modern ideas in homotopy theory and category theory, particularly as it relates to the use of infinity-categories. As with the original lectures, the text is meant to be a leisurely read suitable for advanced graduate students and interested researchers in topology and adjacent fields.

Form Factors In Completely Integrable Models Of Quantum Field Theory

Form Factors In Completely Integrable Models Of Quantum Field Theory
Author: F A Smirnov
Publisher: World Scientific
Total Pages: 224
Release: 1992-08-07
Genre: Science
ISBN: 9814506907

The monograph summarizes recent achievements in the calculation of matrix elements of local operators (form factors) for completely integrable models. Particularly, it deals with sine-Gordon, chiral Gross-Neven and O(3) nonlinear s models. General requirements on form factors are formulated and explicit formulas for form factors of most fundamental local operators are presented for the above mentioned models.

Factorization Algebras in Quantum Field Theory: Volume 1

Factorization Algebras in Quantum Field Theory: Volume 1
Author: Kevin Costello
Publisher: Cambridge University Press
Total Pages: 399
Release: 2016-12-15
Genre: Mathematics
ISBN: 1316737888

Factorization algebras are local-to-global objects that play a role in classical and quantum field theory which is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this first volume, the authors develop the theory of factorization algebras in depth, but with a focus upon examples exhibiting their use in field theory, such as the recovery of a vertex algebra from a chiral conformal field theory and a quantum group from Abelian Chern-Simons theory. Expositions of the relevant background in homological algebra, sheaves and functional analysis are also included, thus making this book ideal for researchers and graduates working at the interface between mathematics and physics.

Factorization Method in Quantum Mechanics

Factorization Method in Quantum Mechanics
Author: Shi-Hai Dong
Publisher: Springer Science & Business Media
Total Pages: 308
Release: 2007-04-01
Genre: Science
ISBN: 1402057962

This book introduces the factorization method in quantum mechanics at an advanced level, with the aim of putting mathematical and physical concepts and techniques like the factorization method, Lie algebras, matrix elements and quantum control at the reader’s disposal. For this purpose, the text provides a comprehensive description of the factorization method and its wide applications in quantum mechanics which complements the traditional coverage found in quantum mechanics textbooks.

Renormalization and Effective Field Theory

Renormalization and Effective Field Theory
Author: Kevin Costello
Publisher: American Mathematical Soc.
Total Pages: 264
Release: 2011
Genre: Mathematics
ISBN: 0821852884

Quantum field theory has had a profound influence on mathematics, and on geometry in particular. However, the notorious difficulties of renormalization have made quantum field theory very inaccessible for mathematicians. This provides complete mathematical foundations for the theory of perturbative quantum field theory, based on Wilson's ideas of low-energy effective field theory and on the Batalin-Vilkovisky formalism.

Factorization Algebras in Quantum Field Theory: Volume 2

Factorization Algebras in Quantum Field Theory: Volume 2
Author: Kevin Costello
Publisher: Cambridge University Press
Total Pages: 418
Release: 2021-09-23
Genre: Mathematics
ISBN: 1316730182

Factorization algebras are local-to-global objects that play a role in classical and quantum field theory that is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this second volume, the authors show how factorization algebras arise from interacting field theories, both classical and quantum, and how they encode essential information such as operator product expansions, Noether currents, and anomalies. Along with a systematic reworking of the Batalin–Vilkovisky formalism via derived geometry and factorization algebras, this book offers concrete examples from physics, ranging from angular momentum and Virasoro symmetries to a five-dimensional gauge theory.

Mathematical Aspects of Quantum Field Theories

Mathematical Aspects of Quantum Field Theories
Author: Damien Calaque
Publisher: Springer
Total Pages: 572
Release: 2015-01-06
Genre: Science
ISBN: 3319099493

Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research. This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools invented and currently employed. Both leading experts and comparative newcomers to the field present their latest findings, helping readers to gain a better understanding of not only quantum but also classical field theories. Though the book offers a valuable resource for mathematicians and physicists alike, the focus is more on mathematical developments. This volume consists of four parts: The first Part covers local aspects of perturbative quantum field theory, with an emphasis on the axiomatization of the algebra behind the operator product expansion. The second Part highlights Chern-Simons gauge theories, while the third examines (semi-)classical field theories. In closing, Part 4 addresses factorization homology and factorization algebras.

Noncommutative Geometry, Quantum Fields and Motives

Noncommutative Geometry, Quantum Fields and Motives
Author: Alain Connes
Publisher: American Mathematical Soc.
Total Pages: 810
Release: 2019-03-13
Genre: Mathematics
ISBN: 1470450453

The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adèle class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.