Extremal Combinatorial Problems and Their Applications

Extremal Combinatorial Problems and Their Applications
Author: B.S. Stechkin
Publisher: Springer
Total Pages: 207
Release: 2007-08-19
Genre: Computers
ISBN: 0585296022

Combinatorial research has proceeded vigorously in Russia over the last few decades, based on both translated Western sources and original Russian material. The present volume extends the extremal approach to the solution of a large class of problems, including some that were hitherto regarded as exclusively algorithmic, and broadens the choice of theoretical bases for modelling real phenomena in order to solve practical problems. Audience: Graduate students of mathematics and engineering interested in the thematics of extremal problems and in the field of combinatorics in general. Can be used both as a textbook and as a reference handbook.

Extremal Combinatorics

Extremal Combinatorics
Author: Stasys Jukna
Publisher: Springer Science & Business Media
Total Pages: 389
Release: 2013-03-09
Genre: Computers
ISBN: 3662046504

This is a concise, up-to-date introduction to extremal combinatorics for non-specialists. Strong emphasis is made on theorems with particularly elegant and informative proofs which may be called the gems of the theory. A wide spectrum of the most powerful combinatorial tools is presented, including methods of extremal set theory, the linear algebra method, the probabilistic method and fragments of Ramsey theory. A thorough discussion of recent applications to computer science illustrates the inherent usefulness of these methods.

Extremal Problems for Finite Sets

Extremal Problems for Finite Sets
Author: Peter Frankl
Publisher: American Mathematical Soc.
Total Pages: 234
Release: 2018-08-15
Genre: Mathematics
ISBN: 1470440393

One of the great appeals of Extremal Set Theory as a subject is that the statements are easily accessible without a lot of mathematical background, yet the proofs and ideas have applications in a wide range of fields including combinatorics, number theory, and probability theory. Written by two of the leading researchers in the subject, this book is aimed at mathematically mature undergraduates, and highlights the elegance and power of this field of study. The first half of the book provides classic results with some new proofs including a complete proof of the Ahlswede-Khachatrian theorem as well as some recent progress on the Erdos matching conjecture. The second half presents some combinatorial structural results and linear algebra methods including the Deza-Erdos-Frankl theorem, application of Rodl's packing theorem, application of semidefinite programming, and very recent progress (obtained in 2016) on the Erdos-Szemeredi sunflower conjecture and capset problem. The book concludes with a collection of challenging open problems.

Extremal Optimization

Extremal Optimization
Author: Yong-Zai Lu
Publisher: CRC Press
Total Pages: 278
Release: 2018-09-03
Genre: Computers
ISBN: 1315360071

Extremal Optimization: Fundamentals, Algorithms, and Applications introduces state-of-the-art extremal optimization (EO) and modified EO (MEO) solutions from fundamentals, methodologies, and algorithms to applications based on numerous classic publications and the authors’ recent original research results. It promotes the movement of EO from academic study to practical applications. The book covers four aspects, beginning with a general review of real-world optimization problems and popular solutions with a focus on computational complexity, such as "NP-hard" and the "phase transitions" occurring on the search landscape. Next, it introduces computational extremal dynamics and its applications in EO from principles, mechanisms, and algorithms to the experiments on some benchmark problems such as TSP, spin glass, Max-SAT (maximum satisfiability), and graph partition. It then presents studies on the fundamental features of search dynamics and mechanisms in EO with a focus on self-organized optimization, evolutionary probability distribution, and structure features (e.g., backbones), which are based on the authors’ recent research results. Finally, it discusses applications of EO and MEO in multiobjective optimization, systems modeling, intelligent control, and production scheduling. The authors present the advanced features of EO in solving NP-hard problems through problem formulation, algorithms, and simulation studies on popular benchmarks and industrial applications. They also focus on the development of MEO and its applications. This book can be used as a reference for graduate students, research developers, and practical engineers who work on developing optimization solutions for those complex systems with hardness that cannot be solved with mathematical optimization or other computational intelligence, such as evolutionary computations.

Extremal Finite Set Theory

Extremal Finite Set Theory
Author: Daniel Gerbner
Publisher: CRC Press
Total Pages: 292
Release: 2018-10-12
Genre: Mathematics
ISBN: 0429804113

Extremal Finite Set Theory surveys old and new results in the area of extremal set system theory. It presents an overview of the main techniques and tools (shifting, the cycle method, profile polytopes, incidence matrices, flag algebras, etc.) used in the different subtopics. The book focuses on the cardinality of a family of sets satisfying certain combinatorial properties. It covers recent progress in the subject of set systems and extremal combinatorics. Intended for graduate students, instructors teaching extremal combinatorics and researchers, this book serves as a sound introduction to the theory of extremal set systems. In each of the topics covered, the text introduces the basic tools used in the literature. Every chapter provides detailed proofs of the most important results and some of the most recent ones, while the proofs of some other theorems are posted as exercises with hints. Features: Presents the most basic theorems on extremal set systems Includes many proof techniques Contains recent developments The book’s contents are well suited to form the syllabus for an introductory course About the Authors: Dániel Gerbner is a researcher at the Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences in Budapest, Hungary. He holds a Ph.D. from Eötvös Loránd University, Hungary and has contributed to numerous publications. His research interests are in extremal combinatorics and search theory. Balázs Patkós is also a researcher at the Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences. He holds a Ph.D. from Central European University, Budapest and has authored several research papers. His research interests are in extremal and probabilistic combinatorics.

Combinatorial Problems and Exercises

Combinatorial Problems and Exercises
Author: L. Lovász
Publisher: Elsevier
Total Pages: 636
Release: 2014-06-28
Genre: Mathematics
ISBN: 0080933092

The aim of this book is to introduce a range of combinatorial methods for those who want to apply these methods in the solution of practical and theoretical problems. Various tricks and techniques are taught by means of exercises. Hints are given in a separate section and a third section contains all solutions in detail. A dictionary section gives definitions of the combinatorial notions occurring in the book.Combinatorial Problems and Exercises was first published in 1979. This revised edition has the same basic structure but has been brought up to date with a series of exercises on random walks on graphs and their relations to eigenvalues, expansion properties and electrical resistance. In various chapters the author found lines of thought that have been extended in a natural and significant way in recent years. About 60 new exercises (more counting sub-problems) have been added and several solutions have been simplified.

Recent Trends in Combinatorics

Recent Trends in Combinatorics
Author: Andrew Beveridge
Publisher: Springer
Total Pages: 775
Release: 2016-04-12
Genre: Mathematics
ISBN: 3319242989

This volume presents some of the research topics discussed at the 2014-2015 Annual Thematic Program Discrete Structures: Analysis and Applications at the Institute for Mathematics and its Applications during Fall 2014, when combinatorics was the focus. Leading experts have written surveys of research problems, making state of the art results more conveniently and widely available. The three-part structure of the volume reflects the three workshops held during Fall 2014. In the first part, topics on extremal and probabilistic combinatorics are presented; part two focuses on additive and analytic combinatorics; and part three presents topics in geometric and enumerative combinatorics. This book will be of use to those who research combinatorics directly or apply combinatorial methods to other fields.

Extremal Graph Theory

Extremal Graph Theory
Author: Bela Bollobas
Publisher: Courier Corporation
Total Pages: 512
Release: 2013-07-02
Genre: Mathematics
ISBN: 0486317587

The ever-expanding field of extremal graph theory encompasses a diverse array of problem-solving methods, including applications to economics, computer science, and optimization theory. This volume, based on a series of lectures delivered to graduate students at the University of Cambridge, presents a concise yet comprehensive treatment of extremal graph theory. Unlike most graph theory treatises, this text features complete proofs for almost all of its results. Further insights into theory are provided by the numerous exercises of varying degrees of difficulty that accompany each chapter. Although geared toward mathematicians and research students, much of Extremal Graph Theory is accessible even to undergraduate students of mathematics. Pure mathematicians will find this text a valuable resource in terms of its unusually large collection of results and proofs, and professionals in other fields with an interest in the applications of graph theory will also appreciate its precision and scope.

Extremal Optimization

Extremal Optimization
Author: Yong-Zai Lu
Publisher: CRC Press
Total Pages: 334
Release: 2018-09-03
Genre: Computers
ISBN: 1315362341

Extremal Optimization: Fundamentals, Algorithms, and Applications introduces state-of-the-art extremal optimization (EO) and modified EO (MEO) solutions from fundamentals, methodologies, and algorithms to applications based on numerous classic publications and the authors’ recent original research results. It promotes the movement of EO from academic study to practical applications. The book covers four aspects, beginning with a general review of real-world optimization problems and popular solutions with a focus on computational complexity, such as "NP-hard" and the "phase transitions" occurring on the search landscape. Next, it introduces computational extremal dynamics and its applications in EO from principles, mechanisms, and algorithms to the experiments on some benchmark problems such as TSP, spin glass, Max-SAT (maximum satisfiability), and graph partition. It then presents studies on the fundamental features of search dynamics and mechanisms in EO with a focus on self-organized optimization, evolutionary probability distribution, and structure features (e.g., backbones), which are based on the authors’ recent research results. Finally, it discusses applications of EO and MEO in multiobjective optimization, systems modeling, intelligent control, and production scheduling. The authors present the advanced features of EO in solving NP-hard problems through problem formulation, algorithms, and simulation studies on popular benchmarks and industrial applications. They also focus on the development of MEO and its applications. This book can be used as a reference for graduate students, research developers, and practical engineers who work on developing optimization solutions for those complex systems with hardness that cannot be solved with mathematical optimization or other computational intelligence, such as evolutionary computations.

The Theory of Partial Algebraic Operations

The Theory of Partial Algebraic Operations
Author: E.S. Ljapin
Publisher: Springer Science & Business Media
Total Pages: 244
Release: 2013-04-17
Genre: Mathematics
ISBN: 9401734836

Nowadays algebra is understood basically as the general theory of algebraic oper ations and relations. It is characterised by a considerable intrinsic naturalness of its initial notions and problems, the unity of its methods, and a breadth that far exceeds that of its basic concepts. It is more often that its power begins to be displayed when one moves outside its own limits. This characteristic ability is seen when one investigates not only complete operations, but partial operations. To a considerable extent these are related to algebraic operators and algebraic operations. The tendency to ever greater generality is amongst the reasons that playa role in explaining this development. But other important reasons play an even greater role. Within this same theory of total operations (that is, operations defined everywhere), there persistently arises in its different sections a necessity of examining the emergent feature of various partial operations. It is particularly important that this has been found in those parts of algebra it brings together and other areas of mathematics it interacts with as well as where algebra finds applica tion at the very limits of mathematics. In this connection we mention the theory of the composition of mappings, category theory, the theory of formal languages and the related theory of mathematical linguistics, coding theory, information theory, and algebraic automata theory. In all these areas (as well as in others) from time to time there arises the need to consider one or another partial operation.