External Memory Algorithms
Download External Memory Algorithms full books in PDF, epub, and Kindle. Read online free External Memory Algorithms ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Jeffrey Scott Vitter |
Publisher | : Now Publishers Inc |
Total Pages | : 192 |
Release | : 2008 |
Genre | : Computers |
ISBN | : 1601981066 |
Describes several useful paradigms for the design and implementation of efficient external memory (EM) algorithms and data structures. The problem domains considered include sorting, permuting, FFT, scientific computing, computational geometry, graphs, databases, geographic information systems, and text and string processing.
Author | : James M. Abello |
Publisher | : American Mathematical Soc. |
Total Pages | : 321 |
Release | : 1999 |
Genre | : Computers |
ISBN | : 0821811843 |
The algorithms involve using techniques from computer science and mathematics to solve combinatorial problems whose associated data require the use of a hierarchy of storage devices. The 15 papers discuss such topics as synopsis data structures for massive data sets, maximum clique problems in very large graphs, concrete software libraries, computing on data streams, efficient cross-trees for external memory, efficient schemes for distributing data on parallel memory systems, and external memory techniques for iso-surface extraction in scientific visualization. Annotation copyrighted by Book News, Inc., Portland, OR.
Author | : Ulrich Meyer |
Publisher | : Springer |
Total Pages | : 443 |
Release | : 2003-07-01 |
Genre | : Computers |
ISBN | : 3540365745 |
Algorithms that have to process large data sets have to take into account that the cost of memory access depends on where the data is stored. Traditional algorithm design is based on the von Neumann model where accesses to memory have uniform cost. Actual machines increasingly deviate from this model: while waiting for memory access, nowadays, microprocessors can in principle execute 1000 additions of registers; for hard disk access this factor can reach six orders of magnitude. The 16 coherent chapters in this monograph-like tutorial book introduce and survey algorithmic techniques used to achieve high performance on memory hierarchies; emphasis is placed on methods interesting from a theoretical as well as important from a practical point of view.
Author | : Dzejla Medjedovic |
Publisher | : Simon and Schuster |
Total Pages | : 302 |
Release | : 2022-08-16 |
Genre | : Computers |
ISBN | : 1638356564 |
Massive modern datasets make traditional data structures and algorithms grind to a halt. This fun and practical guide introduces cutting-edge techniques that can reliably handle even the largest distributed datasets. In Algorithms and Data Structures for Massive Datasets you will learn: Probabilistic sketching data structures for practical problems Choosing the right database engine for your application Evaluating and designing efficient on-disk data structures and algorithms Understanding the algorithmic trade-offs involved in massive-scale systems Deriving basic statistics from streaming data Correctly sampling streaming data Computing percentiles with limited space resources Algorithms and Data Structures for Massive Datasets reveals a toolbox of new methods that are perfect for handling modern big data applications. You’ll explore the novel data structures and algorithms that underpin Google, Facebook, and other enterprise applications that work with truly massive amounts of data. These effective techniques can be applied to any discipline, from finance to text analysis. Graphics, illustrations, and hands-on industry examples make complex ideas practical to implement in your projects—and there’s no mathematical proofs to puzzle over. Work through this one-of-a-kind guide, and you’ll find the sweet spot of saving space without sacrificing your data’s accuracy. About the technology Standard algorithms and data structures may become slow—or fail altogether—when applied to large distributed datasets. Choosing algorithms designed for big data saves time, increases accuracy, and reduces processing cost. This unique book distills cutting-edge research papers into practical techniques for sketching, streaming, and organizing massive datasets on-disk and in the cloud. About the book Algorithms and Data Structures for Massive Datasets introduces processing and analytics techniques for large distributed data. Packed with industry stories and entertaining illustrations, this friendly guide makes even complex concepts easy to understand. You’ll explore real-world examples as you learn to map powerful algorithms like Bloom filters, Count-min sketch, HyperLogLog, and LSM-trees to your own use cases. What's inside Probabilistic sketching data structures Choosing the right database engine Designing efficient on-disk data structures and algorithms Algorithmic tradeoffs in massive-scale systems Computing percentiles with limited space resources About the reader Examples in Python, R, and pseudocode. About the author Dzejla Medjedovic earned her PhD in the Applied Algorithms Lab at Stony Brook University, New York. Emin Tahirovic earned his PhD in biostatistics from University of Pennsylvania. Illustrator Ines Dedovic earned her PhD at the Institute for Imaging and Computer Vision at RWTH Aachen University, Germany. Table of Contents 1 Introduction PART 1 HASH-BASED SKETCHES 2 Review of hash tables and modern hashing 3 Approximate membership: Bloom and quotient filters 4 Frequency estimation and count-min sketch 5 Cardinality estimation and HyperLogLog PART 2 REAL-TIME ANALYTICS 6 Streaming data: Bringing everything together 7 Sampling from data streams 8 Approximate quantiles on data streams PART 3 DATA STRUCTURES FOR DATABASES AND EXTERNAL MEMORY ALGORITHMS 9 Introducing the external memory model 10 Data structures for databases: B-trees, Bε-trees, and LSM-trees 11 External memory sorting
Author | : Pat Morin |
Publisher | : Athabasca University Press |
Total Pages | : 336 |
Release | : 2013 |
Genre | : Computers |
ISBN | : 1927356385 |
Introduction -- Array-based lists -- Linked lists -- Skiplists -- Hash tables -- Binary trees -- Random binary search trees -- Scapegoat trees -- Red-black trees -- Heaps -- Sorting algorithms -- Graphs -- Data structures for integers -- External memory searching.
Author | : Gianfranco Bilardi |
Publisher | : Lecture Notes in Computer Science |
Total Pages | : 538 |
Release | : 1998-07-29 |
Genre | : Computers |
ISBN | : |
This book constitutes the refereed proceedings of the 6th Annual European Symposium on Algorithms, ESA'97, held in Venice, Italy, in August 1998. The 40 revised full papers presented together with two invited contributions were carefully reviewed and selected from a total of 131 submissions. The book is divided into sections on data structures, strings and biology, numerical algorithms, geometry, randomized and online algorithms, parallel and distributed algorithms, graph algorithms, and optimization.
Author | : Hong Shen |
Publisher | : Springer Nature |
Total Pages | : 563 |
Release | : 2020-01-25 |
Genre | : Computers |
ISBN | : 9811527679 |
This book constitutes the refereed proceedings of the 10th International Symposium on Parallel Architectures, Algorithms and Programming, PAAP 2019, held in Guangzhou, China, in December 2019. The 39 revised full papers and 8 revised short papers presented were carefully reviewed and selected from 121 submissions. The papers deal with research results and development activities in all aspects of parallel architectures, algorithms and programming techniques.
Author | : Jan Vahrenhold |
Publisher | : Springer |
Total Pages | : 302 |
Release | : 2009-06-04 |
Genre | : Computers |
ISBN | : 3642020119 |
This book constitutes the refereed proceedings of the 8th International Symposium on Experimental and Efficient Algorithms, SEA 2009, held in Dortmund, Germany, in June 2009. The 23 revised full papers were carefully reviewed and selected from 64 submissions and present current research on experimental evaluation and engineering of algorithms, as well as in various aspects of computational optimization and its applications. Contributions are supported by experimental evaluation, methodological issues in the design and interpretation of experiments, the use of (meta- ) heuristics, or application-driven case studies that deepen the understanding of a problem's complexity.
Author | : Clifford A. Shaffer |
Publisher | : |
Total Pages | : 536 |
Release | : 2001 |
Genre | : Computers |
ISBN | : |
This practical text contains fairly "traditional" coverage of data structures with a clear and complete use of algorithm analysis, and some emphasis on file processing techniques as relevant to modern programmers. It fully integrates OO programming with these topics, as part of the detailed presentation of OO programming itself.Chapter topics include lists, stacks, and queues; binary and general trees; graphs; file processing and external sorting; searching; indexing; and limits to computation.For programmers who need a good reference on data structures.
Author | : Clifford A. Shaffer |
Publisher | : Courier Corporation |
Total Pages | : 607 |
Release | : 2012-09-06 |
Genre | : Computers |
ISBN | : 0486173569 |
Comprehensive treatment focuses on creation of efficient data structures and algorithms and selection or design of data structure best suited to specific problems. This edition uses Java as the programming language.