Exterior Differential Systems and Equivalence Problems

Exterior Differential Systems and Equivalence Problems
Author: Kichoon Yang
Publisher: Springer Science & Business Media
Total Pages: 206
Release: 2013-03-14
Genre: Mathematics
ISBN: 9401580685

This monograph presents a concise yet elementary account of exterior differential system theory so that it can be quickly applied to problems. The first part of the monograph, Chapters 1-5, deals with the general theory: the Cartan-Kaehler theorem is proved, the notions of involution and prolongation are carefully laid out, quasi-linear differential systems are examined in detail, and explicit examples of the Spencer cohomology groups and the characteristic variety are given. The second part of the monograph, Chapters 6 and 7, deals with applications to problems in differential geometry: the isometric embedding theorem of Cartan-Janet and its various geometric ramifications are discussed, a proof of the Andreotti-Hill theorem on the O-R embedding problem is given, and embeddings of abstract projective structures are discussed. For researchers and graduate students who would like a good introduction to exterior differential systems. This volume will also be particularly useful to those whose work involves differential geometry and partial differential equations.

Exterior Differential Systems

Exterior Differential Systems
Author: Robert L. Bryant
Publisher: Springer Science & Business Media
Total Pages: 483
Release: 2013-06-29
Genre: Mathematics
ISBN: 1461397146

This book gives a treatment of exterior differential systems. It will in clude both the general theory and various applications. An exterior differential system is a system of equations on a manifold defined by equating to zero a number of exterior differential forms. When all the forms are linear, it is called a pfaffian system. Our object is to study its integral manifolds, i. e. , submanifolds satisfying all the equations of the system. A fundamental fact is that every equation implies the one obtained by exterior differentiation, so that the complete set of equations associated to an exterior differential system constitutes a differential ideal in the algebra of all smooth forms. Thus the theory is coordinate-free and computations typically have an algebraic character; however, even when coordinates are used in intermediate steps, the use of exterior algebra helps to efficiently guide the computations, and as a consequence the treatment adapts well to geometrical and physical problems. A system of partial differential equations, with any number of inde pendent and dependent variables and involving partial derivatives of any order, can be written as an exterior differential system. In this case we are interested in integral manifolds on which certain coordinates remain independent. The corresponding notion in exterior differential systems is the independence condition: certain pfaffian forms remain linearly indepen dent. Partial differential equations and exterior differential systems with an independence condition are essentially the same object.

Exterior Differential Systems and Euler-Lagrange Partial Differential Equations

Exterior Differential Systems and Euler-Lagrange Partial Differential Equations
Author: Robert Bryant
Publisher: University of Chicago Press
Total Pages: 230
Release: 2003-07
Genre: Mathematics
ISBN: 9780226077932

In Exterior Differential Systems, the authors present the results of their ongoing development of a theory of the geometry of differential equations, focusing especially on Lagrangians and Poincaré-Cartan forms. They also cover certain aspects of the theory of exterior differential systems, which provides the language and techniques for the entire study. Because it plays a central role in uncovering geometric properties of differential equations, the method of equivalence is particularly emphasized. In addition, the authors discuss conformally invariant systems at length, including results on the classification and application of symmetries and conservation laws. The book also covers the Second Variation, Euler-Lagrange PDE systems, and higher-order conservation laws. This timely synthesis of partial differential equations and differential geometry will be of fundamental importance to both students and experienced researchers working in geometric analysis.

Relativity and Scientific Computing

Relativity and Scientific Computing
Author: Friedrich W Hehl
Publisher: Springer Science & Business Media
Total Pages: 405
Release: 2012-12-06
Genre: Science
ISBN: 3642957323

For this set of lectures we assumed that the reader has a reasonable back ground in physics and some knowledge of general relativity, the modern theory of gravity in macrophysics, and cosmology. Computer methods are present ed by leading experts in the three main domains: in numerics, in computer algebra, and in visualization. The idea was that each of these subdisciplines is introduced by an extended set of main lectures and that each is conceived as being of comparable 'importance. Therefpre we believe that the book represents a good introduction into scientific I computing for any student who wants to specialize in relativity, gravitation, and/or astrophysics. We took great care to select lecturers who teach in a comprehensible way and who are, at the same time, at the research front of their respective field. In numerics we had the privilege of having a lecturer from the National Center for Supercomputing Applications (NCSA, Champaign, IL, USA) and some from other leading institutions of the world; visualization was taught by a visualization expert from Boeing; and in com puter algebra we took recourse to practitioners of different computer algebra systems as applied to classical general relativity up to quantum gravity and differential geometry.

Cartan for Beginners

Cartan for Beginners
Author: Thomas Andrew Ivey
Publisher: American Mathematical Soc.
Total Pages: 394
Release: 2003
Genre: Mathematics
ISBN: 0821833758

This book is an introduction to Cartan's approach to differential geometry. Two central methods in Cartan's geometry are the theory of exterior differential systems and the method of moving frames. This book presents thorough and modern treatments of both subjects, including their applications to both classic and contemporary problems. It begins with the classical geometry of surfaces and basic Riemannian geometry in the language of moving frames, along with an elementary introduction to exterior differential systems. Key concepts are developed incrementally with motivating examples leading to definitions, theorems, and proofs. Once the basics of the methods are established, the authors develop applications and advanced topics.One notable application is to complex algebraic geometry, where they expand and update important results from projective differential geometry. The book features an introduction to $G$-structures and a treatment of the theory of connections. The Cartan machinery is also applied to obtain explicit solutions of PDEs via Darboux's method, the method of characteristics, and Cartan's method of equivalence. This text is suitable for a one-year graduate course in differential geometry, and parts of it can be used for a one-semester course. It has numerous exercises and examples throughout. It will also be useful to experts in areas such as PDEs and algebraic geometry who want to learn how moving frames and exterior differential systems apply to their fields.

Geometric Approaches to Differential Equations

Geometric Approaches to Differential Equations
Author: Peter J. Vassiliou
Publisher: Cambridge University Press
Total Pages: 242
Release: 2000-03-13
Genre: Mathematics
ISBN: 9780521775984

A concise and accessible introduction to the wide range of topics in geometric approaches to differential equations.

Handbook of Global Analysis

Handbook of Global Analysis
Author: Demeter Krupka
Publisher: Elsevier
Total Pages: 1243
Release: 2011-08-11
Genre: Mathematics
ISBN: 0080556736

This is a comprehensive exposition of topics covered by the American Mathematical Society’s classification “Global Analysis , dealing with modern developments in calculus expressed using abstract terminology. It will be invaluable for graduate students and researchers embarking on advanced studies in mathematics and mathematical physics.This book provides a comprehensive coverage of modern global analysis and geometrical mathematical physics, dealing with topics such as; structures on manifolds, pseudogroups, Lie groupoids, and global Finsler geometry; the topology of manifolds and differentiable mappings; differential equations (including ODEs, differential systems and distributions, and spectral theory); variational theory on manifolds, with applications to physics; function spaces on manifolds; jets, natural bundles and generalizations; and non-commutative geometry. - Comprehensive coverage of modern global analysis and geometrical mathematical physics- Written by world-experts in the field- Up-to-date contents

Partial Differential Equations and Group Theory

Partial Differential Equations and Group Theory
Author: J.F. Pommaret
Publisher: Springer Science & Business Media
Total Pages: 481
Release: 2013-03-09
Genre: Mathematics
ISBN: 940172539X

Ordinary differential control thPory (the classical theory) studies input/output re lations defined by systems of ordinary differential equations (ODE). The various con cepts that can be introduced (controllability, observability, invertibility, etc. ) must be tested on formal objects (matrices, vector fields, etc. ) by means of formal operations (multiplication, bracket, rank, etc. ), but without appealing to the explicit integration (search for trajectories, etc. ) of the given ODE. Many partial results have been re cently unified by means of new formal methods coming from differential geometry and differential algebra. However, certain problems (invariance, equivalence, linearization, etc. ) naturally lead to systems of partial differential equations (PDE). More generally, partial differential control theory studies input/output relations defined by systems of PDE (mechanics, thermodynamics, hydrodynamics, plasma physics, robotics, etc. ). One of the aims of this book is to extend the preceding con cepts to this new situation, where, of course, functional analysis and/or a dynamical system approach cannot be used. A link will be exhibited between this domain of applied mathematics and the famous 'Backlund problem', existing in the study of solitary waves or solitons. In particular, we shall show how the methods of differ ential elimination presented here will allow us to determine compatibility conditions on input and/or output as a better understanding of the foundations of control the ory. At the same time we shall unify differential geometry and differential algebra in a new framework, called differential algebraic geometry.