Exponential Attractors For Dissipative Evolution Equations
Download Exponential Attractors For Dissipative Evolution Equations full books in PDF, epub, and Kindle. Read online free Exponential Attractors For Dissipative Evolution Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : A. Eden |
Publisher | : |
Total Pages | : 200 |
Release | : 1994 |
Genre | : Mathematics |
ISBN | : |
Covering a pioneering area of dynamical systems, this monograph includes references, Navier-Stokes equations and many applications which should be of particular interest to those working in the field of fluid mechanics.
Author | : Alp Eden |
Publisher | : Elsevier Masson |
Total Pages | : 182 |
Release | : 1994 |
Genre | : Differentiable dynamical systems |
ISBN | : 9782225843068 |
Exponentiol Attractors is a new area of Dynamical Systems, pioneered to a large extent by the authors of this book. Their aim was to develop and present the theory of Exponentiol Attractors for Dissipative Evolutîon Equations, mostly of infinite dimension. Exponentiol Attractors represent "realistic" abjects intermediate between the two "ideal" ones which are the global Attractors and the Inertiel Manifolds. All three abjects describe the long time behaviour of dynamical systems. The book is written in the style of a text appropriate for a graduate courses. With its applications, for example, ta Novier-Stokes equations as well as ta many other related partial differential equations of mathematical physics, this work is of particular interest ta those interested in the connections between fluid mechanics, partial differential equations and dynamical systems.
Author | : Olga A. Ladyzhenskaya |
Publisher | : Cambridge University Press |
Total Pages | : 97 |
Release | : 2022-06-09 |
Genre | : Mathematics |
ISBN | : 1009229826 |
First published 1992; Re-issued 2008; Reprinted with Introduction 2022.
Author | : C.M. Dafermos |
Publisher | : Elsevier |
Total Pages | : 609 |
Release | : 2008-10-06 |
Genre | : Mathematics |
ISBN | : 0080931979 |
The material collected in this volume discusses the present as well as expected future directions of development of the field with particular emphasis on applications. The seven survey articles present different topics in Evolutionary PDE's, written by leading experts.- Review of new results in the area- Continuation of previous volumes in the handbook series covering Evolutionary PDEs- Written by leading experts
Author | : Igor Chueshov |
Publisher | : Springer Science & Business Media |
Total Pages | : 777 |
Release | : 2010-04-08 |
Genre | : Mathematics |
ISBN | : 0387877126 |
In the study of mathematical models that arise in the context of concrete - plications, the following two questions are of fundamental importance: (i) we- posedness of the model, including existence and uniqueness of solutions; and (ii) qualitative properties of solutions. A positive answer to the ?rst question, - ing of prime interest on purely mathematical grounds, also provides an important test of the viability of the model as a description of a given physical phenomenon. An answer or insight to the second question provides a wealth of information about the model, hence about the process it describes. Of particular interest are questions related to long-time behavior of solutions. Such an evolution property cannot be v- i?ed empirically, thus any in a-priori information about the long-time asymptotics can be used in predicting an ultimate long-time response and dynamical behavior of solutions. In recent years, this set of investigations has attracted a great deal of attention. Consequent efforts have then resulted in the creation and infusion of new methods and new tools that have been responsible for carrying out a successful an- ysis of long-time behavior of several classes of nonlinear PDEs.
Author | : Atsushi Yagi |
Publisher | : Springer Science & Business Media |
Total Pages | : 594 |
Release | : 2009-11-03 |
Genre | : Mathematics |
ISBN | : 3642046312 |
This monograph is intended to present the fundamentals of the theory of abstract parabolic evolution equations and to show how to apply to various nonlinear dif- sion equations and systems arising in science. The theory gives us a uni?ed and s- tematic treatment for concrete nonlinear diffusion models. Three main approaches are known to the abstract parabolic evolution equations, namely, the semigroup methods, the variational methods, and the methods of using operational equations. In order to keep the volume of the monograph in reasonable length, we will focus on the semigroup methods. For other two approaches, see the related references in Bibliography. The semigroup methods, which go back to the invention of the analytic se- groups in the middle of the last century, are characterized by precise formulas representing the solutions of the Cauchy problem for evolution equations. The ?tA analytic semigroup e generated by a linear operator ?A provides directly a fundamental solution to the Cauchy problem for an autonomous linear e- dU lution equation, +AU =F(t), 0
Author | : A.V. Babin |
Publisher | : Elsevier |
Total Pages | : 543 |
Release | : 1992-03-09 |
Genre | : Mathematics |
ISBN | : 0080875467 |
Problems, ideas and notions from the theory of finite-dimensional dynamical systems have penetrated deeply into the theory of infinite-dimensional systems and partial differential equations. From the standpoint of the theory of the dynamical systems, many scientists have investigated the evolutionary equations of mathematical physics. Such equations include the Navier-Stokes system, magneto-hydrodynamics equations, reaction-diffusion equations, and damped semilinear wave equations. Due to the recent efforts of many mathematicians, it has been established that the attractor of the Navier-Stokes system, which attracts (in an appropriate functional space) as t - ∞ all trajectories of this system, is a compact finite-dimensional (in the sense of Hausdorff) set. Upper and lower bounds (in terms of the Reynolds number) for the dimension of the attractor were found. These results for the Navier-Stokes system have stimulated investigations of attractors of other equations of mathematical physics. For certain problems, in particular for reaction-diffusion systems and nonlinear damped wave equations, mathematicians have established the existence of the attractors and their basic properties; furthermore, they proved that, as t - +∞, an infinite-dimensional dynamics described by these equations and systems uniformly approaches a finite-dimensional dynamics on the attractor U, which, in the case being considered, is the union of smooth manifolds. This book is devoted to these and several other topics related to the behaviour as t - ∞ of solutions for evolutionary equations.
Author | : Xiaoying Han |
Publisher | : World Scientific |
Total Pages | : 381 |
Release | : 2023-03-14 |
Genre | : Mathematics |
ISBN | : 9811267774 |
There is an extensive literature in the form of papers (but no books) on lattice dynamical systems. The book focuses on dissipative lattice dynamical systems and their attractors of various forms such as autonomous, nonautonomous and random. The existence of such attractors is established by showing that the corresponding dynamical system has an appropriate kind of absorbing set and is asymptotically compact in some way.There is now a very large literature on lattice dynamical systems, especially on attractors of all kinds in such systems. We cannot hope to do justice to all of them here. Instead, we have focused on key areas of representative types of lattice systems and various types of attractors. Our selection is biased by our own interests, in particular to those dealing with biological applications. One of the important results is the approximation of Heaviside switching functions in LDS by sigmoidal functions.Nevertheless, we believe that this book will provide the reader with a solid introduction to the field, its main results and the methods that are used to obtain them.
Author | : Messoud Efendiev |
Publisher | : American Mathematical Soc. |
Total Pages | : 233 |
Release | : 2013-09-26 |
Genre | : Mathematics |
ISBN | : 1470409852 |
This book deals with the long-time behavior of solutions of degenerate parabolic dissipative equations arising in the study of biological, ecological, and physical problems. Examples include porous media equations, -Laplacian and doubly nonlinear equations, as well as degenerate diffusion equations with chemotaxis and ODE-PDE coupling systems. For the first time, the long-time dynamics of various classes of degenerate parabolic equations, both semilinear and quasilinear, are systematically studied in terms of their global and exponential attractors. The long-time behavior of many dissipative systems generated by evolution equations of mathematical physics can be described in terms of global attractors. In the case of dissipative PDEs in bounded domains, this attractor usually has finite Hausdorff and fractal dimension. Hence, if the global attractor exists, its defining property guarantees that the dynamical system reduced to the attractor contains all of the nontrivial dynamics of the original system. Moreover, the reduced phase space is really "thinner" than the initial phase space. However, in contrast to nondegenerate parabolic type equations, for a quite large class of degenerate parabolic type equations, their global attractors can have infinite fractal dimension. The main goal of the present book is to give a detailed and systematic study of the well-posedness and the dynamics of the semigroup associated to important degenerate parabolic equations in terms of their global and exponential attractors. Fundamental topics include existence of attractors, convergence of the dynamics and the rate of convergence, as well as the determination of the fractal dimension and the Kolmogorov entropy of corresponding attractors. The analysis and results in this book show that there are new effects related to the attractor of such degenerate equations that cannot be observed in the case of nondegenerate equations in bounded domains. This book is published in cooperation with Real Sociedad Matemática Española (RSME).
Author | : James C. Robinson |
Publisher | : Cambridge University Press |
Total Pages | : 219 |
Release | : 2010-12-16 |
Genre | : Mathematics |
ISBN | : 1139495186 |
This accessible research monograph investigates how 'finite-dimensional' sets can be embedded into finite-dimensional Euclidean spaces. The first part brings together a number of abstract embedding results, and provides a unified treatment of four definitions of dimension that arise in disparate fields: Lebesgue covering dimension (from classical 'dimension theory'), Hausdorff dimension (from geometric measure theory), upper box-counting dimension (from dynamical systems), and Assouad dimension (from the theory of metric spaces). These abstract embedding results are applied in the second part of the book to the finite-dimensional global attractors that arise in certain infinite-dimensional dynamical systems, deducing practical consequences from the existence of such attractors: a version of the Takens time-delay embedding theorem valid in spatially extended systems, and a result on parametrisation by point values. This book will appeal to all researchers with an interest in dimension theory, particularly those working in dynamical systems.