Exploratory Analysis Of Metallurgical Process Data With Neural Networks And Related Methods
Download Exploratory Analysis Of Metallurgical Process Data With Neural Networks And Related Methods full books in PDF, epub, and Kindle. Read online free Exploratory Analysis Of Metallurgical Process Data With Neural Networks And Related Methods ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : C. Aldrich |
Publisher | : Elsevier |
Total Pages | : 387 |
Release | : 2002-04-19 |
Genre | : Science |
ISBN | : 0080531466 |
This volume is concerned with the analysis and interpretation of multivariate measurements commonly found in the mineral and metallurgical industries, with the emphasis on the use of neural networks.The book is primarily aimed at the practicing metallurgist or process engineer, and a considerable part of it is of necessity devoted to the basic theory which is introduced as briefly as possible within the large scope of the field. Also, although the book focuses on neural networks, they cannot be divorced from their statistical framework and this is discussed in length. The book is therefore a blend of basic theory and some of the most recent advances in the practical application of neural networks.
Author | : Chris Aldrich |
Publisher | : Springer Science & Business Media |
Total Pages | : 388 |
Release | : 2013-06-15 |
Genre | : Computers |
ISBN | : 1447151852 |
This unique text/reference describes in detail the latest advances in unsupervised process monitoring and fault diagnosis with machine learning methods. Abundant case studies throughout the text demonstrate the efficacy of each method in real-world settings. The broad coverage examines such cutting-edge topics as the use of information theory to enhance unsupervised learning in tree-based methods, the extension of kernel methods to multiple kernel learning for feature extraction from data, and the incremental training of multilayer perceptrons to construct deep architectures for enhanced data projections. Topics and features: discusses machine learning frameworks based on artificial neural networks, statistical learning theory and kernel-based methods, and tree-based methods; examines the application of machine learning to steady state and dynamic operations, with a focus on unsupervised learning; describes the use of spectral methods in process fault diagnosis.
Author | : Jeng-Shyang Pan |
Publisher | : Springer |
Total Pages | : 529 |
Release | : 2010-11-06 |
Genre | : Computers |
ISBN | : 3642167322 |
This volume composes the proceedings of the Second International Conference on Computational Collective Intelligence––Technologies and Applications (ICCCI 2010), which was hosted by National Kaohsiung University of Applied Sciences and Wroclaw University of Technology, and was held in Kaohsiung City on November 10-12, 2010. ICCCI 2010 was technically co-sponsored by Shenzhen Graduate School of Harbin Institute of Technology, the Tainan Chapter of the IEEE Signal Processing Society, the Taiwan Association for Web Intelligence Consortium and the Taiwanese Association for Consumer Electronics. It aimed to bring together researchers, engineers and po- cymakers to discuss the related techniques, to exchange research ideas, and to make friends. ICCCI 2010 focused on the following themes: • Agent Theory and Application • Cognitive Modeling of Agent Systems • Computational Collective Intelligence • Computer Vision • Computational Intelligence • Hybrid Systems • Intelligent Image Processing • Information Hiding • Machine Learning • Social Networks • Web Intelligence and Interaction Around 500 papers were submitted to ICCCI 2010 and each paper was reviewed by at least two referees. The referees were from universities and industrial organizations. 155 papers were accepted for the final technical program. Four plenary talks were kindly offered by: Gary G. Yen (Oklahoma State University, USA), on “Population Control in Evolutionary Multi-objective Optimization Algorithm,” Chin-Chen Chang (Feng Chia University, Taiwan), on “Applying De-clustering Concept to Information Hiding,” Qinyu Zhang (Harbin Institute of Technology, China), on “Cognitive Radio Networks and Its Applications,” and Lakhmi C.
Author | : Rose Arny |
Publisher | : |
Total Pages | : 1756 |
Release | : 2002 |
Genre | : American literature |
ISBN | : |
Author | : |
Publisher | : |
Total Pages | : 2068 |
Release | : 2002 |
Genre | : Books |
ISBN | : |
Author | : Nina Golyandina |
Publisher | : CRC Press |
Total Pages | : 322 |
Release | : 2001-01-23 |
Genre | : Mathematics |
ISBN | : 9781420035841 |
Over the last 15 years, singular spectrum analysis (SSA) has proven very successful. It has already become a standard tool in climatic and meteorological time series analysis and well known in nonlinear physics and signal processing. However, despite the promise it holds for time series applications in other disciplines, SSA is not widely known among statisticians and econometrists, and although the basic SSA algorithm looks simple, understanding what it does and where its pitfalls lay is by no means simple. Analysis of Time Series Structure: SSA and Related Techniques provides a careful, lucid description of its general theory and methodology. Part I introduces the basic concepts, and sets forth the main findings and results, then presents a detailed treatment of the methodology. After introducing the basic SSA algorithm, the authors explore forecasting and apply SSA ideas to change-point detection algorithms. Part II is devoted to the theory of SSA. Here the authors formulate and prove the statements of Part I. They address the singular value decomposition (SVD) of real matrices, time series of finite rank, and SVD of trajectory matrices. Based on the authors' original work and filled with applications illustrated with real data sets, this book offers an outstanding opportunity to obtain a working knowledge of why, when, and how SSA works. It builds a strong foundation for successfully using the technique in applications ranging from mathematics and nonlinear physics to economics, biology, oceanology, social science, engineering, financial econometrics, and market research.
Author | : Arthur James Wells |
Publisher | : |
Total Pages | : 1190 |
Release | : 2002 |
Genre | : Bibliography, National |
ISBN | : |
Author | : |
Publisher | : |
Total Pages | : 772 |
Release | : 1994 |
Genre | : Aeronautics |
ISBN | : |
Author | : Johan A. K. Suykens |
Publisher | : Springer Science & Business Media |
Total Pages | : 284 |
Release | : 1998-06-30 |
Genre | : Language Arts & Disciplines |
ISBN | : 9780792381952 |
This collection of eight contributions presents advanced black-box techniques for nonlinear modeling. The methods discussed include neural nets and related model structures for nonlinear system identification, enhanced multi-stream Kalman filter training for recurrent networks, the support vector method of function estimation, parametric density estimation for the classification of acoustic feature vectors in speech recognition, wavelet based modeling of nonlinear systems, nonlinear identification based on fuzzy models, statistical learning in control and matrix theory, and nonlinear time- series analysis. The volume concludes with the results of a time- series prediction competition held at a July 1998 workshop in Belgium. Annotation copyrighted by Book News, Inc., Portland, OR.
Author | : Daniel T. Larose |
Publisher | : John Wiley & Sons |
Total Pages | : 827 |
Release | : 2015-02-19 |
Genre | : Computers |
ISBN | : 1118868676 |
Learn methods of data analysis and their application to real-world data sets This updated second edition serves as an introduction to data mining methods and models, including association rules, clustering, neural networks, logistic regression, and multivariate analysis. The authors apply a unified “white box” approach to data mining methods and models. This approach is designed to walk readers through the operations and nuances of the various methods, using small data sets, so readers can gain an insight into the inner workings of the method under review. Chapters provide readers with hands-on analysis problems, representing an opportunity for readers to apply their newly-acquired data mining expertise to solving real problems using large, real-world data sets. Data Mining and Predictive Analytics: Offers comprehensive coverage of association rules, clustering, neural networks, logistic regression, multivariate analysis, and R statistical programming language Features over 750 chapter exercises, allowing readers to assess their understanding of the new material Provides a detailed case study that brings together the lessons learned in the book Includes access to the companion website, www.dataminingconsultant, with exclusive password-protected instructor content Data Mining and Predictive Analytics will appeal to computer science and statistic students, as well as students in MBA programs, and chief executives.