Excursions of Markov Processes

Excursions of Markov Processes
Author: Robert M. Blumenthal
Publisher: Springer Science & Business Media
Total Pages: 287
Release: 2012-12-06
Genre: Mathematics
ISBN: 1468494120

Let {Xti t ~ O} be a Markov process in Rl, and break up the path X t into (random) component pieces consisting of the zero set ({ tlX = O}) and t the "excursions away from 0," that is pieces of path X. : T ::5 s ::5 t, with Xr- = X = 0, but X. 1= 0 for T

Poisson Point Processes and Their Application to Markov Processes

Poisson Point Processes and Their Application to Markov Processes
Author: Kiyosi Itô
Publisher: Springer
Total Pages: 54
Release: 2015-12-24
Genre: Mathematics
ISBN: 981100272X

An extension problem (often called a boundary problem) of Markov processes has been studied, particularly in the case of one-dimensional diffusion processes, by W. Feller, K. Itô, and H. P. McKean, among others. In this book, Itô discussed a case of a general Markov process with state space S and a specified point a ∈ S called a boundary. The problem is to obtain all possible recurrent extensions of a given minimal process (i.e., the process on S \ {a} which is absorbed on reaching the boundary a). The study in this lecture is restricted to a simpler case of the boundary a being a discontinuous entrance point, leaving a more general case of a continuous entrance point to future works. He established a one-to-one correspondence between a recurrent extension and a pair of a positive measure k(db) on S \ {a} (called the jumping-in measure and a non-negative number m

Local Times and Excursion Theory for Brownian Motion

Local Times and Excursion Theory for Brownian Motion
Author: Ju-Yi Yen
Publisher: Springer
Total Pages: 140
Release: 2013-10-01
Genre: Mathematics
ISBN: 3319012703

This monograph discusses the existence and regularity properties of local times associated to a continuous semimartingale, as well as excursion theory for Brownian paths. Realizations of Brownian excursion processes may be translated in terms of the realizations of a Wiener process under certain conditions. With this aim in mind, the monograph presents applications to topics which are not usually treated with the same tools, e.g.: arc sine law, laws of functionals of Brownian motion, and the Feynman-Kac formula.

Essentials of Stochastic Processes

Essentials of Stochastic Processes
Author: Richard Durrett
Publisher: Springer
Total Pages: 282
Release: 2016-11-07
Genre: Mathematics
ISBN: 3319456148

Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.

Brownian Motion, Martingales, and Stochastic Calculus

Brownian Motion, Martingales, and Stochastic Calculus
Author: Jean-François Le Gall
Publisher: Springer
Total Pages: 282
Release: 2016-04-28
Genre: Mathematics
ISBN: 3319310895

This book offers a rigorous and self-contained presentation of stochastic integration and stochastic calculus within the general framework of continuous semimartingales. The main tools of stochastic calculus, including Itô’s formula, the optional stopping theorem and Girsanov’s theorem, are treated in detail alongside many illustrative examples. The book also contains an introduction to Markov processes, with applications to solutions of stochastic differential equations and to connections between Brownian motion and partial differential equations. The theory of local times of semimartingales is discussed in the last chapter. Since its invention by Itô, stochastic calculus has proven to be one of the most important techniques of modern probability theory, and has been used in the most recent theoretical advances as well as in applications to other fields such as mathematical finance. Brownian Motion, Martingales, and Stochastic Calculus provides a strong theoretical background to the reader interested in such developments. Beginning graduate or advanced undergraduate students will benefit from this detailed approach to an essential area of probability theory. The emphasis is on concise and efficient presentation, without any concession to mathematical rigor. The material has been taught by the author for several years in graduate courses at two of the most prestigious French universities. The fact that proofs are given with full details makes the book particularly suitable for self-study. The numerous exercises help the reader to get acquainted with the tools of stochastic calculus.

Séminaire de Probabilités XLII

Séminaire de Probabilités XLII
Author: Catherine Donati-Martin
Publisher: Springer Science & Business Media
Total Pages: 457
Release: 2009-06-29
Genre: Mathematics
ISBN: 3642017622

The tradition of specialized courses in the Séminaires de Probabilités is continued with A. Lejay's Another introduction to rough paths. Other topics from this 42nd volume range from the interface between analysis and probability to special processes, Lévy processes and Lévy systems, branching, penalization, representation of Gaussian processes, filtrations and quantum probability.

Selected Works of Kai Lai Chung

Selected Works of Kai Lai Chung
Author: Farid AitSahlia
Publisher: World Scientific
Total Pages: 847
Release: 2008
Genre: Mathematics
ISBN: 9812833862

This unique volume presents a collection of the extensive journal publications written by Kai Lai Chung over a span of 70-odd years. It was produced to celebrate his 90th birthday. The selection is only a subset of the many contributions that he made throughout his prolific career. Another volume, Chance and Choice, published by World Scientific in 2004, contains yet another subset, with four articles in common with this volume. Kai Lai Chung''s research contributions have had a major influence on several areas in probability. Among his most significant works are those related to sums of independent random variables, Markov chains, time reversal of Markov processes, probabilistic potential theory, Brownian excursions, and gauge theorems for the SchrAdinger equation.As Kai Lai Chung''s contributions spawned critical new developments, this volume also contains retrospective and perspective views provided by collaborators and other authors who themselves advanced the areas of probability and mathematics."

Diffusions, Markov Processes, and Martingales: Volume 1, Foundations

Diffusions, Markov Processes, and Martingales: Volume 1, Foundations
Author: L. C. G. Rogers
Publisher: Cambridge University Press
Total Pages: 412
Release: 2000-04-13
Genre: Mathematics
ISBN: 9780521775946

Now available in paperback, this celebrated book has been prepared with readers' needs in mind, remaining a systematic guide to a large part of the modern theory of Probability, whilst retaining its vitality. The authors' aim is to present the subject of Brownian motion not as a dry part of mathematical analysis, but to convey its real meaning and fascination. The opening, heuristic chapter does just this, and it is followed by a comprehensive and self-contained account of the foundations of theory of stochastic processes. Chapter 3 is a lively and readable account of the theory of Markov processes. Together with its companion volume, this book helps equip graduate students for research into a subject of great intrinsic interest and wide application in physics, biology, engineering, finance and computer science.