Evolutionary Machine Design

Evolutionary Machine Design
Author: Nadia Nedjah
Publisher: Nova Publishers
Total Pages: 250
Release: 2005
Genre: Computers
ISBN: 9781594544057

In recent years, genetic programming has attracted many researcher's attention and so became a consolidated methodology to automatically create new competitive computer programs. Concise and efficient synthesis of a variety of systems has been generated by evolutionary computations. Evolvable hardware is a growing discipline. It allows one to evolve creative and novel hardware architectures given the expected input/output behaviour. There are two kinds of evolvable hardware: extrinsic and intrinsic. The former relies on a simulated evolutionary process to evaluate the characteristics of the evolved designs while the latter uses hardware itself to do so. Usually, reconfigurable hardware such FPGA and FPAA are exploited. One of the main problems that still faces researchers in the field of evolutionary machine design is the scalability. This book is devoted to reporting innovative and significant progress in automatic machine design. Theoretical as well as practical chapters are contemplated. The scalability problem in evolutionary machine designs is addresses. The content of this book is divided into two main parts: evolvable hardware and genetic programming; and evolutionary designs. In the following, we give a brief description of the main contribution of each of the included chapters.

Knowledge Incorporation in Evolutionary Computation

Knowledge Incorporation in Evolutionary Computation
Author: Yaochu Jin
Publisher: Springer
Total Pages: 543
Release: 2013-04-22
Genre: Mathematics
ISBN: 3540445110

Incorporation of a priori knowledge, such as expert knowledge, meta-heuristics and human preferences, as well as domain knowledge acquired during evolu tionary search, into evolutionary algorithms has received increasing interest in the recent years. It has been shown from various motivations that knowl edge incorporation into evolutionary search is able to significantly improve search efficiency. However, results on knowledge incorporation in evolution ary computation have been scattered in a wide range of research areas and a systematic handling of this important topic in evolutionary computation still lacks. This edited book is a first attempt to put together the state-of-art and re cent advances on knowledge incorporation in evolutionary computation within a unified framework. Existing methods for knowledge incorporation are di vided into the following five categories according to the functionality of the incorporated knowledge in the evolutionary algorithms. 1. Knowledge incorporation in representation, population initialization, - combination and mutation. 2. Knowledge incorporation in selection and reproduction. 3. Knowledge incorporation in fitness evaluations. 4. Knowledge incorporation through life-time learning and human-computer interactions. 5. Incorporation of human preferences in multi-objective evolutionary com putation. The intended readers of this book are graduate students, researchers and practitioners in all fields of science and engineering who are interested in evolutionary computation. The book is divided into six parts. Part I contains one introductory chapter titled "A selected introduction to evolutionary computation" by Yao, which presents a concise but insightful introduction to evolutionary computation.

Evolutionary Design by Computers

Evolutionary Design by Computers
Author: Peter Bentley
Publisher: Morgan Kaufmann
Total Pages: 482
Release: 1999-05-28
Genre: Computers
ISBN: 9781558606050

"Evolutionary Design By Computers offers an enticing preview of the future of computer-aided design: Design by Darwin." Lawrence J. Fogel, President, Natural Selection, Inc. "Evolutionary design by computers is the major revolution in design thinking of the 20th century and this book is the best introduction available." Professor John Frazer, Swire Chair and Head of School of Design, the Hong Kong Polytechnic University, Author of "An Evolutionary Architecture" "Peter Bentley has assembled and edited an important collection of papers that demonstrate, convincingly, the utility of evolutionary computation for engineering solutions to complex problems in design." David B. Fogel, Editor-in-Chief, IEEE Transactions on Evolutionary Computation Some of the most startling achievements in the use of computers to automate design are being accomplished by the use of evolutionary search algorithms to evolve designs. Evolutionary Design By Computers provides a showcase of the best and most original work of the leading international experts in Evolutionary Computation, Engineering Design, Computer Art, and Artificial Life. By bringing together the highest achievers in these fields for the first time, including a foreword by Richard Dawkins, this book provides the definitive coverage of significant developments in Evolutionary Design. This book explores related sub-areas of Evolutionary Design, including: design optimization creative design the creation of art artificial life. It shows for the first time how techniques in each area overlap, and promotes the cross-fertilization of ideas and methods.

Automating the Design of Data Mining Algorithms

Automating the Design of Data Mining Algorithms
Author: Gisele L. Pappa
Publisher: Springer
Total Pages: 0
Release: 2012-03-14
Genre: Computers
ISBN: 9783642261251

Data mining is a very active research area with many successful real-world app- cations. It consists of a set of concepts and methods used to extract interesting or useful knowledge (or patterns) from real-world datasets, providing valuable support for decision making in industry, business, government, and science. Although there are already many types of data mining algorithms available in the literature, it is still dif cult for users to choose the best possible data mining algorithm for their particular data mining problem. In addition, data mining al- rithms have been manually designed; therefore they incorporate human biases and preferences. This book proposes a new approach to the design of data mining algorithms. - stead of relying on the slow and ad hoc process of manual algorithm design, this book proposes systematically automating the design of data mining algorithms with an evolutionary computation approach. More precisely, we propose a genetic p- gramming system (a type of evolutionary computation method that evolves c- puter programs) to automate the design of rule induction algorithms, a type of cl- si cation method that discovers a set of classi cation rules from data. We focus on genetic programming in this book because it is the paradigmatic type of machine learning method for automating the generation of programs and because it has the advantage of performing a global search in the space of candidate solutions (data mining algorithms in our case), but in principle other types of search methods for this task could be investigated in the future.

Introduction To Evolutionary Informatics

Introduction To Evolutionary Informatics
Author: Robert J Marks Ii
Publisher: World Scientific
Total Pages: 331
Release: 2017-02-27
Genre: Computers
ISBN: 9813142162

Science has made great strides in modeling space, time, mass and energy. Yet little attention has been paid to the precise representation of the information ubiquitous in nature.Introduction to Evolutionary Informatics fuses results from complexity modeling and information theory that allow both meaning and design difficulty in nature to be measured in bits. Built on the foundation of a series of peer-reviewed papers published by the authors, the book is written at a level easily understandable to readers with knowledge of rudimentary high school math. Those seeking a quick first read or those not interested in mathematical detail can skip marked sections in the monograph and still experience the impact of this new and exciting model of nature's information.This book is written for enthusiasts in science, engineering and mathematics interested in understanding the essential role of information in closely examined evolution theory.

The Master Algorithm

The Master Algorithm
Author: Pedro Domingos
Publisher: Basic Books
Total Pages: 354
Release: 2015-09-22
Genre: Computers
ISBN: 0465061923

Recommended by Bill Gates A thought-provoking and wide-ranging exploration of machine learning and the race to build computer intelligences as flexible as our own In the world's top research labs and universities, the race is on to invent the ultimate learning algorithm: one capable of discovering any knowledge from data, and doing anything we want, before we even ask. In The Master Algorithm, Pedro Domingos lifts the veil to give us a peek inside the learning machines that power Google, Amazon, and your smartphone. He assembles a blueprint for the future universal learner--the Master Algorithm--and discusses what it will mean for business, science, and society. If data-ism is today's philosophy, this book is its bible.

Evolutionary Algorithms in Engineering Applications

Evolutionary Algorithms in Engineering Applications
Author: Dipankar Dasgupta
Publisher: Springer Science & Business Media
Total Pages: 561
Release: 2013-06-29
Genre: Computers
ISBN: 3662034239

Evolutionary algorithms are general-purpose search procedures based on the mechanisms of natural selection and population genetics. They are appealing because they are simple, easy to interface, and easy to extend. This volume is concerned with applications of evolutionary algorithms and associated strategies in engineering. It will be useful for engineers, designers, developers, and researchers in any scientific discipline interested in the applications of evolutionary algorithms. The volume consists of five parts, each with four or five chapters. The topics are chosen to emphasize application areas in different fields of engineering. Each chapter can be used for self-study or as a reference by practitioners to help them apply evolutionary algorithms to problems in their engineering domains.

The Design of Innovation

The Design of Innovation
Author: David E. Goldberg
Publisher: Springer Science & Business Media
Total Pages: 259
Release: 2013-03-14
Genre: Computers
ISBN: 1475736436

7 69 6 A DESIGN APPROACH TO PROBLEM DIFFICULTY 71 1 Design and Problem Difficulty 71 2 Three Misconceptions 72 3 Hard Problems Exist 76 4 The 3-Way Decomposition and Its Core 77 The Core of Intra-BB Difficulty: Deception 5 77 6 The Core of Inter-BB Difficulty: Scaling 83 7 The Core of Extra-BB Difficulty: Noise 88 Crosstalk: All Roads Lead to the Core 8 89 9 From Multimodality to Hierarchy 93 10 Summary 100 7 ENSURING BUILDING BLOCK SUPPLY 101 1 Past Work 101 2 Facetwise Supply Model I: One BB 102 Facetwise Supply Model II: Partition Success 103 3 4 Population Size for BB Supply 104 Summary 5 106 8 ENSURING BUILDING BLOCK GROWTH 109 1 The Schema Theorem: BB Growth Bound 109 2 Schema Growth Somewhat More Generally 111 3 Designing for BB Market Share Growth 112 4 Selection Press ure for Early Success 114 5 Designing for Late in the Day 116 The Schema Theorem Works 6 118 A Demonstration of Selection Stall 7 119 Summary 122 8 9 MAKING TIME FOR BUILDING BLOCKS 125 1 Analysis of Selection Alone: Takeover Time 126 2 Drift: When Selection Chooses for No Reason 129 3 Convergence Times with Multiple BBs 132 4 A Time-Scales Derivation of Critical Locus 142 5 A Little Model of Noise-Induced Run Elongation 143 6 From Alleles to Building Blocks 147 7 Summary 148 10 DECIDING WELL 151 1 Why is Decision Making a Problem? 151

Data-Driven Evolutionary Optimization

Data-Driven Evolutionary Optimization
Author: Yaochu Jin
Publisher: Springer Nature
Total Pages: 393
Release: 2021-06-28
Genre: Computers
ISBN: 3030746402

Intended for researchers and practitioners alike, this book covers carefully selected yet broad topics in optimization, machine learning, and metaheuristics. Written by world-leading academic researchers who are extremely experienced in industrial applications, this self-contained book is the first of its kind that provides comprehensive background knowledge, particularly practical guidelines, and state-of-the-art techniques. New algorithms are carefully explained, further elaborated with pseudocode or flowcharts, and full working source code is made freely available. This is followed by a presentation of a variety of data-driven single- and multi-objective optimization algorithms that seamlessly integrate modern machine learning such as deep learning and transfer learning with evolutionary and swarm optimization algorithms. Applications of data-driven optimization ranging from aerodynamic design, optimization of industrial processes, to deep neural architecture search are included.