Evolutionary Computation Swarm Intelligence
Download Evolutionary Computation Swarm Intelligence full books in PDF, epub, and Kindle. Read online free Evolutionary Computation Swarm Intelligence ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Felix Chan |
Publisher | : BoD – Books on Demand |
Total Pages | : 550 |
Release | : 2007-12-01 |
Genre | : Computers |
ISBN | : 3902613092 |
In the era globalisation the emerging technologies are governing engineering industries to a multifaceted state. The escalating complexity has demanded researchers to find the possible ways of easing the solution of the problems. This has motivated the researchers to grasp ideas from the nature and implant it in the engineering sciences. This way of thinking led to emergence of many biologically inspired algorithms that have proven to be efficient in handling the computationally complex problems with competence such as Genetic Algorithm (GA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), etc. Motivated by the capability of the biologically inspired algorithms the present book on "Swarm Intelligence: Focus on Ant and Particle Swarm Optimization" aims to present recent developments and applications concerning optimization with swarm intelligence techniques. The papers selected for this book comprise a cross-section of topics that reflect a variety of perspectives and disciplinary backgrounds. In addition to the introduction of new concepts of swarm intelligence, this book also presented some selected representative case studies covering power plant maintenance scheduling; geotechnical engineering; design and machining tolerances; layout problems; manufacturing process plan; job-shop scheduling; structural design; environmental dispatching problems; wireless communication; water distribution systems; multi-plant supply chain; fault diagnosis of airplane engines; and process scheduling. I believe these 27 chapters presented in this book adequately reflect these topics.
Author | : Fabio Caraffini |
Publisher | : MDPI |
Total Pages | : 286 |
Release | : 2020-11-25 |
Genre | : Technology & Engineering |
ISBN | : 3039434543 |
The vast majority of real-world problems can be expressed as an optimisation task by formulating an objective function, also known as cost or fitness function. The most logical methods to optimise such a function when (1) an analytical expression is not available, (2) mathematical hypotheses do not hold, and (3) the dimensionality of the problem or stringent real-time requirements make it infeasible to find an exact solution mathematically are from the field of Evolutionary Computation (EC) and Swarm Intelligence (SI). The latter are broad and still growing subjects in Computer Science in the study of metaheuristic approaches, i.e., those approaches which do not make any assumptions about the problem function, inspired from natural phenomena such as, in the first place, the evolution process and the collaborative behaviours of groups of animals and communities, respectively. This book contains recent advances in the EC and SI fields, covering most themes currently receiving a great deal of attention such as benchmarking and tunning of optimisation algorithms, their algorithm design process, and their application to solve challenging real-world problems to face large-scale domains.
Author | : Jagdish Chand Bansal |
Publisher | : Springer |
Total Pages | : 194 |
Release | : 2018-06-06 |
Genre | : Technology & Engineering |
ISBN | : 3319913417 |
This book is a delight for academics, researchers and professionals working in evolutionary and swarm computing, computational intelligence, machine learning and engineering design, as well as search and optimization in general. It provides an introduction to the design and development of a number of popular and recent swarm and evolutionary algorithms with a focus on their applications in engineering problems in diverse domains. The topics discussed include particle swarm optimization, the artificial bee colony algorithm, Spider Monkey optimization algorithm, genetic algorithms, constrained multi-objective evolutionary algorithms, genetic programming, and evolutionary fuzzy systems. A friendly and informative treatment of the topics makes this book an ideal reference for beginners and those with experience alike.
Author | : Xin-She Yang |
Publisher | : Springer |
Total Pages | : 295 |
Release | : 2014-12-27 |
Genre | : Technology & Engineering |
ISBN | : 331913826X |
This timely review volume summarizes the state-of-the-art developments in nature-inspired algorithms and applications with the emphasis on swarm intelligence and bio-inspired computation. Topics include the analysis and overview of swarm intelligence and evolutionary computation, hybrid metaheuristic algorithms, bat algorithm, discrete cuckoo search, firefly algorithm, particle swarm optimization, and harmony search as well as convergent hybridization. Application case studies have focused on the dehydration of fruits and vegetables by the firefly algorithm and goal programming, feature selection by the binary flower pollination algorithm, job shop scheduling, single row facility layout optimization, training of feed-forward neural networks, damage and stiffness identification, synthesis of cross-ambiguity functions by the bat algorithm, web document clustering, truss analysis, water distribution networks, sustainable building designs and others. As a timely review, this book can serve as an ideal reference for graduates, lecturers, engineers and researchers in computer science, evolutionary computing, artificial intelligence, machine learning, computational intelligence, data mining, engineering optimization and designs.
Author | : Sandeep Kumar |
Publisher | : CRC Press |
Total Pages | : 169 |
Release | : 2019-11-11 |
Genre | : Medical |
ISBN | : 1000726797 |
Healthcare sector is characterized by difficulty, dynamism and variety. In 21st century, healthcare domain is surrounded by tons of challenges in terms of Disease detection, prevention, high costs, skilled technicians and better infrastructure. In order to handle these challenges, Intelligent Healthcare management technologies are required to play an effective role in improvising patient’s life. Healthcare organizations also need to continuously discover useful and actionable knowledge to gain insight from tons of data for various purposes for saving lives, reducing medical operations errors, enhancing efficiency, reducing costs and making the whole world a healthy world. Applying Swarm Intelligence and Evolutionary Algorithms in Healthcare and Drug Development is essential nowadays. The objective of this book is to highlight various Swarm Intelligence and Evolutionary Algorithms techniques for various medical issues in terms of Cancer Diagnosis, Brain Tumor, Diabetic Retinopathy, Heart disease as well as drug design and development. The book will act as one-stop reference for readers to think and explore Swarm Intelligence and Evolutionary Algorithms seriously for real-time patient diagnosis, as the book provides solutions to various complex diseases found critical for medical practitioners to diagnose in real-world. Key Features: Highlights the importance and applications of Swarm Intelligence and Evolutionary Algorithms in Healthcare industry. Elaborates Swarm Intelligence and Evolutionary Algorithms for Cancer Detection. In-depth coverage of computational methodologies, approaches and techniques based on Swarm Intelligence and Evolutionary Algorithms for detecting Brain Tumour including deep learning to optimize brain tumor diagnosis. Provides a strong foundation for Diabetic Retinopathy detection using Swarm and Evolutionary algorithms. Focuses on applying Swarm Intelligence and Evolutionary Algorithms for Heart Disease detection and diagnosis. Comprehensively covers the role of Swarm Intelligence and Evolutionary Algorithms for Drug Design and Discovery. The book will play a significant role for Researchers, Medical Practitioners, Healthcare Professionals and Industrial Healthcare Research and Development wings to conduct advanced research in Healthcare using Swarm Intelligence and Evolutionary Algorithms techniques.
Author | : Hitoshi Iba |
Publisher | : CRC Press |
Total Pages | : 288 |
Release | : 2022-04-14 |
Genre | : Computers |
ISBN | : 1000579905 |
The book provides theoretical and practical knowledge about swarm intelligence and evolutionary computation. It describes the emerging trends in deep learning that involve the integration of swarm intelligence and evolutionary computation with deep learning, i.e., deep neuroevolution and deep swarms. The study reviews the research on network structures and hyperparameters in deep learning, and attracting attention as a new trend in AI. A part of the coverage of the book is based on the results of practical examples as well as various real-world applications. The future of AI, based on the ideas of swarm intelligence and evolution is also covered. The book is an introductory work for researchers. Approaches to the realization of AI and the emergence of intelligence are explained, with emphasis on evolution and learning. It is designed for beginners who do not have any knowledge of algorithms or biology, and explains the basics of neural networks and deep learning in an easy-to-understand manner. As a practical exercise in neuroevolution, the book shows how to learn to drive a racing car and a helicopter using MindRender. MindRender is an AI educational software that allows the readers to create and play with VR programs, and provides a variety of examples so that the readers will be able to create and understand AI.
Author | : Gary B. Fogel |
Publisher | : Elsevier |
Total Pages | : 425 |
Release | : 2002-09-27 |
Genre | : Computers |
ISBN | : 0080506089 |
Bioinformatics has never been as popular as it is today. The genomics revolution is generating so much data in such rapid succession that it has become difficult for biologists to decipher. In particular, there are many problems in biology that are too large to solve with standard methods. Researchers in evolutionary computation (EC) have turned their attention to these problems. They understand the power of EC to rapidly search very large and complex spaces and return reasonable solutions. While these researchers are increasingly interested in problems from the biological sciences, EC and its problem-solving capabilities are generally not yet understood or applied in the biology community.This book offers a definitive resource to bridge the computer science and biology communities. Gary Fogel and David Corne, well-known representatives of these fields, introduce biology and bioinformatics to computer scientists, and evolutionary computation to biologists and computer scientists unfamiliar with these techniques. The fourteen chapters that follow are written by leading computer scientists and biologists who examine successful applications of evolutionary computation to various problems in the biological sciences.* Describes applications of EC to bioinformatics in a wide variety of areas including DNA sequencing, protein folding, gene and protein classification, drug targeting, drug design, data mining of biological databases, and biodata visualization.* Offers industrial and academic researchers in computer science, biology, and bioinformatics an important resource for applying evolutionary computation.* Includes a detailed appendix of biological data resources.
Author | : Chis, Monica |
Publisher | : IGI Global |
Total Pages | : 282 |
Release | : 2010-06-30 |
Genre | : Education |
ISBN | : 1615208100 |
Evolutionary Computation and Optimization Algorithms in Software Engineering: Applications and Techniques lays the foundation for the successful integration of evolutionary computation into software engineering. It surveys techniques ranging from genetic algorithms, to swarm optimization theory, to ant colony optimization, demonstrating their uses and capabilities. These techniques are applied to aspects of software engineering such as software testing, quality assessment, reliability assessment, and fault prediction models, among others, to providing researchers, scholars and students with the knowledge needed to expand this burgeoning application.
Author | : Shengxiang Yang |
Publisher | : Springer |
Total Pages | : 479 |
Release | : 2013-11-18 |
Genre | : Technology & Engineering |
ISBN | : 3642384161 |
This book provides a compilation on the state-of-the-art and recent advances of evolutionary computation for dynamic optimization problems. The motivation for this book arises from the fact that many real-world optimization problems and engineering systems are subject to dynamic environments, where changes occur over time. Key issues for addressing dynamic optimization problems in evolutionary computation, including fundamentals, algorithm design, theoretical analysis, and real-world applications, are presented. "Evolutionary Computation for Dynamic Optimization Problems" is a valuable reference to scientists, researchers, professionals and students in the field of engineering and science, particularly in the areas of computational intelligence, nature- and bio-inspired computing, and evolutionary computation.
Author | : Xin-She Yang |
Publisher | : Newnes |
Total Pages | : 445 |
Release | : 2013-05-16 |
Genre | : Computers |
ISBN | : 0124051774 |
Swarm Intelligence and bio-inspired computation have become increasing popular in the last two decades. Bio-inspired algorithms such as ant colony algorithms, bat algorithms, bee algorithms, firefly algorithms, cuckoo search and particle swarm optimization have been applied in almost every area of science and engineering with a dramatic increase of number of relevant publications. This book reviews the latest developments in swarm intelligence and bio-inspired computation from both the theory and application side, providing a complete resource that analyzes and discusses the latest and future trends in research directions. It can help new researchers to carry out timely research and inspire readers to develop new algorithms. With its impressive breadth and depth, this book will be useful for advanced undergraduate students, PhD students and lecturers in computer science, engineering and science as well as researchers and engineers. - Focuses on the introduction and analysis of key algorithms - Includes case studies for real-world applications - Contains a balance of theory and applications, so readers who are interested in either algorithm or applications will all benefit from this timely book.