Evolution Algebras And Their Applications
Download Evolution Algebras And Their Applications full books in PDF, epub, and Kindle. Read online free Evolution Algebras And Their Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Jianjun Paul Tian |
Publisher | : Springer Science & Business Media |
Total Pages | : 136 |
Release | : 2008 |
Genre | : Mathematics |
ISBN | : 3540742832 |
Behind genetics and Markov chains, there is an intrinsic algebraic structure. It is defined as a type of new algebra: as evolution algebra. This concept lies between algebras and dynamical systems. Algebraically, evolution algebras are non-associative Banach algebras; dynamically, they represent discrete dynamical systems. Evolution algebras have many connections with other mathematical fields including graph theory, group theory, stochastic processes, dynamical systems, knot theory, 3-manifolds, and the study of the Ihara-Selberg zeta function. In this volume the foundation of evolution algebra theory and applications in non-Mendelian genetics and Markov chains is developed, with pointers to some further research topics.
Author | : Frank Werner |
Publisher | : MDPI |
Total Pages | : 294 |
Release | : 2020-05-27 |
Genre | : Technology & Engineering |
ISBN | : 3039287982 |
Graph theory is an important area of applied mathematics with a broad spectrum of applications in many fields. This book results from aSpecialIssue in the journal Mathematics entitled “Graph-Theoretic Problems and Their New Applications”. It contains 20 articles covering a broad spectrum of graph-theoretic works that were selected from 151 submitted papers after a thorough refereeing process. Among others, it includes a deep survey on mixed graphs and their use for solutions ti scheduling problems. Other subjects include topological indices, domination numbers of graphs, domination games, contraction mappings, and neutrosophic graphs. Several applications of graph theory are discussed, e.g., the use of graph theory in the context of molecular processes.
Author | : Mercedes Siles Molina |
Publisher | : Springer Nature |
Total Pages | : 338 |
Release | : 2020-01-02 |
Genre | : Mathematics |
ISBN | : 3030352560 |
This book gathers together selected contributions presented at the 3rd Moroccan Andalusian Meeting on Algebras and their Applications, held in Chefchaouen, Morocco, April 12-14, 2018, and which reflects the mathematical collaboration between south European and north African countries, mainly France, Spain, Morocco, Tunisia and Senegal. The book is divided in three parts and features contributions from the following fields: algebraic and analytic methods in associative and non-associative structures; homological and categorical methods in algebra; and history of mathematics. Covering topics such as rings and algebras, representation theory, number theory, operator algebras, category theory, group theory and information theory, it opens up new avenues of study for graduate students and young researchers. The findings presented also appeal to anyone interested in the fields of algebra and mathematical analysis.
Author | : Bernard Russo |
Publisher | : American Mathematical Soc. |
Total Pages | : 282 |
Release | : 2016-08-25 |
Genre | : Mathematics |
ISBN | : 1470419289 |
The USA-Uzbekistan Conference on Analysis and Mathematical Physics, focusing on contemporary issues in dynamical systems, mathematical physics, operator algebras, and several complex variables, was hosted by California State University, Fullerton, from May 20–23, 2014. The main objective of the conference was to facilitate scientific communication and collaboration between mathematicians from the USA and Uzbekistan. This volume contains the proceedings of the Special Session on Algebra and Functional Analysis. The theory of operator algebras is the unified theme for many papers in this volume. Out of four extensive survey papers, two cover problems related to derivation of various algebras of functions. The other two surveys are on classification of Leibniz algebras and on evolution algebras. The sixteen research articles are devoted to certain analytic topics, such as minimal projections with respect to numerical radius, functional equations and discontinuous polynomials, Fourier inversion for distributions, Schrödinger operators, convexity and dynamical systems.
Author | : G.M. Dixon |
Publisher | : Springer Science & Business Media |
Total Pages | : 242 |
Release | : 2013-06-29 |
Genre | : Mathematics |
ISBN | : 1475723156 |
I don't know who Gigerenzer is, but he wrote something very clever that I saw quoted in a popular glossy magazine: "Evolution has tuned the way we think to frequencies of co-occurances, as with the hunter who remembers the area where he has had the most success killing game." This sanguine thought explains my obsession with the division algebras. Every effort I have ever made to connect them to physics - to the design of reality - has succeeded, with my expectations often surpassed. Doubtless this strong statement is colored by a selective memory, but the kind of game I sought, and still seek, seems to frowst about this particular watering hole in droves. I settled down there some years ago and have never feIt like Ieaving. This book is about the beasts I selected for attention (if you will, to ren der this metaphor politically correct, let's say I was a nature photographer), and the kind of tools I had to develop to get the kind of shots Iwanted (the tools that I found there were for my taste overly abstract and theoretical). Half of thisbook is about these tools, and some applications thereof that should demonstrate their power. The rest is devoted to a demonstration of the intimate connection between the mathematics of the division algebras and the Standard Model of quarks and leptons with U(l) x SU(2) x SU(3) gauge fields, and the connection of this model to lO-dimensional spacetime implied by the mathematics.
Author | : Leo Corry |
Publisher | : Birkhäuser |
Total Pages | : 463 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3034879172 |
This book describes two stages in the historical development of the notion of mathematical structures: first, it traces its rise in the context of algebra from the mid-1800s to 1930, and then considers attempts to formulate elaborate theories after 1930 aimed at elucidating, from a purely mathematical perspective, the precise meaning of this idea.
Author | : Stephen Boyd |
Publisher | : Cambridge University Press |
Total Pages | : 477 |
Release | : 2018-06-07 |
Genre | : Business & Economics |
ISBN | : 1316518965 |
A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.
Author | : Michael Alexander |
Publisher | : CRC Press |
Total Pages | : 440 |
Release | : 2008-12-22 |
Genre | : Mathematics |
ISBN | : 1420064878 |
Collects the Latest Research Involving the Application of Process Algebra to ComputingExploring state-of-the-art applications, Process Algebra for Parallel and Distributed Processing shows how one formal method of reasoning-process algebra-has become a powerful tool for solving design and implementation challenges of concurrent systems. Parallel Pr
Author | : Charles C Pinter |
Publisher | : Courier Corporation |
Total Pages | : 402 |
Release | : 2010-01-14 |
Genre | : Mathematics |
ISBN | : 0486474178 |
Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.
Author | : Peter J. Olver |
Publisher | : Springer Science & Business Media |
Total Pages | : 524 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1468402749 |
This book is devoted to explaining a wide range of applications of con tinuous symmetry groups to physically important systems of differential equations. Emphasis is placed on significant applications of group-theoretic methods, organized so that the applied reader can readily learn the basic computational techniques required for genuine physical problems. The first chapter collects together (but does not prove) those aspects of Lie group theory which are of importance to differential equations. Applications covered in the body of the book include calculation of symmetry groups of differential equations, integration of ordinary differential equations, including special techniques for Euler-Lagrange equations or Hamiltonian systems, differential invariants and construction of equations with pre scribed symmetry groups, group-invariant solutions of partial differential equations, dimensional analysis, and the connections between conservation laws and symmetry groups. Generalizations of the basic symmetry group concept, and applications to conservation laws, integrability conditions, completely integrable systems and soliton equations, and bi-Hamiltonian systems are covered in detail. The exposition is reasonably self-contained, and supplemented by numerous examples of direct physical importance, chosen from classical mechanics, fluid mechanics, elasticity and other applied areas.