Euler’s number. Why is Eule's number "e" the basis of natural logarithm functions

Euler’s number. Why is Eule's number
Author: Sumaanyu Maheshwari
Publisher: GRIN Verlag
Total Pages: 30
Release: 2016-11-30
Genre: Mathematics
ISBN: 3668353603

Document from the year 2016 in the subject Mathematics - Miscellaneous, grade: A, , course: IB Math HL, language: English, abstract: When the concept of logarithms was first introduced to me, a plethora of questions revolved around my mind. My inquisitiveness compelled me to think and ask questions as to where are the practical applications of logarithms, why do we take different bases of these functions and what is the need for natural logarithms. Amongst these questions, one particularly intrigued me: why is e particularly the base of the natural logarithm. Why out of all numbers that exist did we choose e as the base of the natural logarithm function? I was fascinated by why taking the base e made the normal logarithm a natural logarithm. Therefore, to quench the curiosity of many others like me, I will show through this paper that why e is the correct choice for the base of exponential and natural logarithm functions. I shall also be exploring the most important property of e, via this paper.

John Napier and the Invention of Logarithms, 1614

John Napier and the Invention of Logarithms, 1614
Author: E. W. Hobson
Publisher: Cambridge University Press
Total Pages: 53
Release: 2012-03-29
Genre: Biography & Autobiography
ISBN: 1107624509

Originally published in 1914, this volume was created to mark the tercentenary of John Napier's Mirifici Logarithmorum Canonis Descriptio. Written by the prominent English mathematician Ernest William Hobson, the text provides a highly readable introduction to the theory of logarithms and puts their discovery within a historical context. Illustrations are also included. This is a concise and accessible book that will be of value to anyone with an interest in logarithms and the history of mathematics.

Leonhardi Euleri Mechanica Sive Motus Scientia Analytice Exposita

Leonhardi Euleri Mechanica Sive Motus Scientia Analytice Exposita
Author: Paul Stäckel
Publisher: Legare Street Press
Total Pages: 0
Release: 2023-07-18
Genre:
ISBN: 9781021321268

This classic work of mathematical physics by Euler is presented in a clear and accessible new translation by Paul Stäckel. With detailed explanations and rigorous proofs, Euler lays out the principles of classical mechanics and explores the physics of motion in great detail. A must-read for anyone interested in the history and nature of physical science. This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work is in the "public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

e: The Story of a Number

e: The Story of a Number
Author: Eli Maor
Publisher: Princeton University Press
Total Pages: 242
Release: 2011-10-12
Genre: Mathematics
ISBN: 1400832349

The interest earned on a bank account, the arrangement of seeds in a sunflower, and the shape of the Gateway Arch in St. Louis are all intimately connected with the mysterious number e. In this informal and engaging history, Eli Maor portrays the curious characters and the elegant mathematics that lie behind the number. Designed for a reader with only a modest mathematical background, this biography brings out the central importance of e to mathematics and illuminates a golden era in the age of science.

How Euler Did Even More

How Euler Did Even More
Author: C. Edward Sandifer
Publisher: The Mathematical Association of America
Total Pages: 254
Release: 2014-11-19
Genre: Mathematics
ISBN: 0883855844

Sandifer has been studying Euler for decades and is one of the world’s leading experts on his work. This volume is the second collection of Sandifer’s “How Euler Did It” columns. Each is a jewel of historical and mathematical exposition. The sum total of years of work and study of the most prolific mathematician of history, this volume will leave you marveling at Euler’s clever inventiveness and Sandifer’s wonderful ability to explicate and put it all in context.

Mathematica

Mathematica
Author: Stephen Wolfram
Publisher:
Total Pages: 996
Release: 1991
Genre:
ISBN: 9780201515022

Introduction to Analysis of the Infinite

Introduction to Analysis of the Infinite
Author: Leonhard Euler
Publisher: Springer Science & Business Media
Total Pages: 341
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461210216

From the preface of the author: "...I have divided this work into two books; in the first of these I have confined myself to those matters concerning pure analysis. In the second book I have explained those thing which must be known from geometry, since analysis is ordinarily developed in such a way that its application to geometry is shown. In the first book, since all of analysis is concerned with variable quantities and functions of such variables, I have given full treatment to functions. I have also treated the transformation of functions and functions as the sum of infinite series. In addition I have developed functions in infinite series..."

Euler's Pioneering Equation

Euler's Pioneering Equation
Author: Robin Wilson
Publisher: Oxford University Press
Total Pages: 200
Release: 2018-02-22
Genre: Mathematics
ISBN: 0192514067

In 1988 The Mathematical Intelligencer, a quarterly mathematics journal, carried out a poll to find the most beautiful theorem in mathematics. Twenty-four theorems were listed and readers were invited to award each a 'score for beauty'. While there were many worthy competitors, the winner was 'Euler's equation'. In 2004 Physics World carried out a similar poll of 'greatest equations', and found that among physicists Euler's mathematical result came second only to Maxwell's equations. The Stanford mathematician Keith Devlin reflected the feelings of many in describing it as "like a Shakespearian sonnet that captures the very essence of love, or a painting which brings out the beauty of the human form that is far more than just skin deep, Euler's equation reaches down into the very depths of existence". What is it that makes Euler's identity, eiπ + 1 = 0, so special? In Euler's Pioneering Equation Robin Wilson shows how this simple, elegant, and profound formula links together perhaps the five most important numbers in mathematics, each associated with a story in themselves: the number 1, the basis of our counting system; the concept of zero, which was a major development in mathematics, and opened up the idea of negative numbers; π an irrational number, the basis for the measurement of circles; the exponential e, associated with exponential growth and logarithms; and the imaginary number i, the square root of -1, the basis of complex numbers. Following a chapter on each of the elements, Robin Wilson discusses how the startling relationship between them was established, including the several near misses to the discovery of the formula.

Introduction to the Division by Zero Calculus

Introduction to the Division by Zero Calculus
Author: SABUROU SAITOH
Publisher: Scientific Research Publishing, Inc. USA
Total Pages: 203
Release: 2021-02-04
Genre: Mathematics
ISBN: 1649970897

The common sense on the division by zero with the long and mysterious history is wrong and our basic idea on the space around the point at infinity is also wrong since Euclid. On the gradient or on differential coefficients we have a great missing since tan(π/2) = 0. Our mathematics is also wrong in elementary mathematics on the division by zero. In this book in a new and definite sense, we will show and give various applications of the division by zero 0/0 = 1/0 = z/0 = 0. In particular, we will introduce several fundamental concepts in calculus, Euclidean geometry, analytic geometry, complex analysis and differential equations. We will see new properties on the Laurent expansion, singularity, derivative, extension of solutions of differential equations beyond analytical and isolated singularities, and reduction problems of differential equations. On Euclidean geometry and analytic geometry, we will find new fields by the concept of the division by zero. We will collect many concrete properties in mathematical sciences from the viewpoint of the division by zero. We will know that the division by zero is our elementary and fundamental mathematics.