Euclidean and Non-Euclidean Geometries

Euclidean and Non-Euclidean Geometries
Author: Marvin J. Greenberg
Publisher: Macmillan
Total Pages: 512
Release: 1993-07-15
Genre: Mathematics
ISBN: 9780716724469

This classic text provides overview of both classic and hyperbolic geometries, placing the work of key mathematicians/ philosophers in historical context. Coverage includes geometric transformations, models of the hyperbolic planes, and pseudospheres.

Euclidean and Non-euclidean Geometries

Euclidean and Non-euclidean Geometries
Author: Maria Helena Noronha
Publisher:
Total Pages: 440
Release: 2002
Genre: Mathematics
ISBN:

This book develops a self-contained treatment of classical Euclidean geometry through both axiomatic and analytic methods. Concise and well organized, it prompts readers to prove a theorem yet provides them with a framework for doing so. Chapter topics cover neutral geometry, Euclidean plane geometry, geometric transformations, Euclidean 3-space, Euclidean n-space; perimeter, area and volume; spherical geometry; hyperbolic geometry; models for plane geometries; and the hyperbolic metric.

Geometry of Surfaces

Geometry of Surfaces
Author: John Stillwell
Publisher: Springer Science & Business Media
Total Pages: 225
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461209293

The geometry of surfaces is an ideal starting point for learning geometry, for, among other reasons, the theory of surfaces of constant curvature has maximal connectivity with the rest of mathematics. This text provides the student with the knowledge of a geometry of greater scope than the classical geometry taught today, which is no longer an adequate basis for mathematics or physics, both of which are becoming increasingly geometric. It includes exercises and informal discussions.

The Four Pillars of Geometry

The Four Pillars of Geometry
Author: John Stillwell
Publisher: Springer Science & Business Media
Total Pages: 240
Release: 2005-08-09
Genre: Mathematics
ISBN: 0387255303

This book is unique in that it looks at geometry from 4 different viewpoints - Euclid-style axioms, linear algebra, projective geometry, and groups and their invariants Approach makes the subject accessible to readers of all mathematical tastes, from the visual to the algebraic Abundantly supplemented with figures and exercises

Introductory Non-Euclidean Geometry

Introductory Non-Euclidean Geometry
Author: Henry Parker Manning
Publisher: Courier Corporation
Total Pages: 110
Release: 2013-01-30
Genre: Mathematics
ISBN: 0486154645

This fine and versatile introduction begins with the theorems common to Euclidean and non-Euclidean geometry, and then it addresses the specific differences that constitute elliptic and hyperbolic geometry. 1901 edition.

A History of Non-Euclidean Geometry

A History of Non-Euclidean Geometry
Author: Boris A. Rosenfeld
Publisher: Springer Science & Business Media
Total Pages: 481
Release: 2012-09-08
Genre: Mathematics
ISBN: 1441986804

The Russian edition of this book appeared in 1976 on the hundred-and-fiftieth anniversary of the historic day of February 23, 1826, when LobaeevskiI delivered his famous lecture on his discovery of non-Euclidean geometry. The importance of the discovery of non-Euclidean geometry goes far beyond the limits of geometry itself. It is safe to say that it was a turning point in the history of all mathematics. The scientific revolution of the seventeenth century marked the transition from "mathematics of constant magnitudes" to "mathematics of variable magnitudes. " During the seventies of the last century there occurred another scientific revolution. By that time mathematicians had become familiar with the ideas of non-Euclidean geometry and the algebraic ideas of group and field (all of which appeared at about the same time), and the (later) ideas of set theory. This gave rise to many geometries in addition to the Euclidean geometry previously regarded as the only conceivable possibility, to the arithmetics and algebras of many groups and fields in addition to the arith metic and algebra of real and complex numbers, and, finally, to new mathe matical systems, i. e. , sets furnished with various structures having no classical analogues. Thus in the 1870's there began a new mathematical era usually called, until the middle of the twentieth century, the era of modern mathe matics.

Geometry by Construction

Geometry by Construction
Author: Michael McDaniel
Publisher: Universal-Publishers
Total Pages: 149
Release: 2015-02-05
Genre: Education
ISBN: 1627340289

"'Geometry by construction' challenges its readers to participate in the creation of mathematics. The questions span the spectrum from easy to newly published research and so are appropriate for a variety of students and teachers. From differentiation in a high school course through college classes and into summer research, any interested geometer will find compelling material"--Back cover.

Non-Euclidean Geometries

Non-Euclidean Geometries
Author: András Prékopa
Publisher: Springer Science & Business Media
Total Pages: 497
Release: 2006-06-03
Genre: Mathematics
ISBN: 0387295550

"From nothing I have created a new different world," wrote János Bolyai to his father, Wolgang Bolyai, on November 3, 1823, to let him know his discovery of non-Euclidean geometry, as we call it today. The results of Bolyai and the co-discoverer, the Russian Lobachevskii, changed the course of mathematics, opened the way for modern physical theories of the twentieth century, and had an impact on the history of human culture. The papers in this volume, which commemorates the 200th anniversary of the birth of János Bolyai, were written by leading scientists of non-Euclidean geometry, its history, and its applications. Some of the papers present new discoveries about the life and works of János Bolyai and the history of non-Euclidean geometry, others deal with geometrical axiomatics; polyhedra; fractals; hyperbolic, Riemannian and discrete geometry; tilings; visualization; and applications in physics.