Essentials Of Applied Mathematics For Engineers And Scientists
Download Essentials Of Applied Mathematics For Engineers And Scientists full books in PDF, epub, and Kindle. Read online free Essentials Of Applied Mathematics For Engineers And Scientists ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Thomas J. Pence |
Publisher | : Cambridge University Press |
Total Pages | : 757 |
Release | : 2020-05-21 |
Genre | : Mathematics |
ISBN | : 1108425445 |
Clear and engaging introduction for graduate students in engineering and the physical sciences to essential topics of applied mathematics.
Author | : Paul DuChateau |
Publisher | : Courier Corporation |
Total Pages | : 401 |
Release | : 2013-01-17 |
Genre | : Mathematics |
ISBN | : 0486141594 |
This book can be used as either a primary text or a supplemental reference for courses in applied mathematics. Its core chapters are devoted to linear algebra, calculus, and ordinary differential equations. Additional topics include partial differential equations and approximation methods. Each chapter features an ample selection of solved problems. These problems were chosen to illustrate not only how to solve various algebraic and differential equations but also how to interpret the solutions in order to gain insight into the behavior of the system modeled by the equation. In addition to the worked-out problems, numerous examples and exercises appear throughout the text.
Author | : Andrei D. Polyanin |
Publisher | : CRC Press |
Total Pages | : 1542 |
Release | : 2006-11-27 |
Genre | : Mathematics |
ISBN | : 1420010514 |
Covering the main fields of mathematics, this handbook focuses on the methods used for obtaining solutions of various classes of mathematical equations that underlie the mathematical modeling of numerous phenomena and processes in science and technology. The authors describe formulas, methods, equations, and solutions that are frequently used in scientific and engineering applications and present classical as well as newer solution methods for various mathematical equations. The book supplies numerous examples, graphs, figures, and diagrams and contains many results in tabular form, including finite sums and series and exact solutions of differential, integral, and functional equations.
Author | : Robert Watts |
Publisher | : Springer Nature |
Total Pages | : 185 |
Release | : 2022-05-31 |
Genre | : Mathematics |
ISBN | : 3031024044 |
The Second Edition of this popular book on practical mathematics for engineers includes new and expanded chapters on perturbation methods and theory. This is a book about linear partial differential equations that are common in engineering and the physical sciences. It will be useful to graduate students and advanced undergraduates in all engineering fields as well as students of physics, chemistry, geophysics and other physical sciences and professional engineers who wish to learn about how advanced mathematics can be used in their professions. The reader will learn about applications to heat transfer, fluid flow and mechanical vibrations. The book is written in such a way that solution methods and application to physical problems are emphasized. There are many examples presented in detail and fully explained in their relation to the real world. References to suggested further reading are included. The topics that are covered include classical separation of variables and orthogonal functions, Laplace transforms, complex variables and Sturm-Liouville transforms. This second edition includes two new and revised chapters on perturbation methods, and singular perturbation theory of differential equations. Table of Contents: Partial Differential Equations in Engineering / The Fourier Method: Separation of Variables / Orthogonal Sets of Functions / Series Solutions of Ordinary Differential Equations / Solutions Using Fourier Series and Integrals / Integral Transforms: The Laplace Transform / Complex Variables and the Laplace Inversion Integral / Solutions with Laplace Transforms / Sturm-Liouville Transforms / Introduction to Perturbation Methods / Singular Perturbation Theory of Differential Equations / Appendix A: The Roots of Certain Transcendental Equations
Author | : Larry A. Glasgow |
Publisher | : John Wiley & Sons |
Total Pages | : 256 |
Release | : 2014-07-24 |
Genre | : Technology & Engineering |
ISBN | : 1118749839 |
Prepare students for success in using applied mathematics for engineering practice and post-graduate studies Moves from one mathematical method to the next sustaining reader interest and easing the application of the techniques Uses different examples from chemical, civil, mechanical and various other engineering fields Based on a decade’s worth of the authors lecture notes detailing the topic of applied mathematics for scientists and engineers Concisely writing with numerous examples provided including historical perspectives as well as a solutions manual for academic adopters
Author | : Max Kurtz |
Publisher | : McGraw-Hill Companies |
Total Pages | : 1114 |
Release | : 1984 |
Genre | : Business & Economics |
ISBN | : |
Author | : Selcuk S. Bayin |
Publisher | : John Wiley & Sons |
Total Pages | : 577 |
Release | : 2013-06-05 |
Genre | : Mathematics |
ISBN | : 1118626168 |
A complete introduction to the multidisciplinary applications of mathematical methods In order to work with varying levels of engineering and physics research, it is important to have a firm understanding of key mathematical concepts such as advanced calculus, differential equations, complex analysis, and introductory mathematical physics. Essentials of Mathematical Methods in Science and Engineering provides a comprehensive introduction to these methods under one cover, outlining basic mathematical skills while also encouraging students and practitioners to develop new, interdisciplinary approaches to their research. The book begins with core topics from various branches of mathematics such as limits, integrals, and inverse functions. Subsequent chapters delve into the analytical tools that are commonly used in scientific and engineering studies, including vector analysis, generalized coordinates, determinants and matrices, linear algebra, complex numbers, complex analysis, and Fourier series. The author provides an extensive chapter on probability theory with applications to statistical mechanics and thermodynamics that complements the following chapter on information theory, which contains coverage of Shannon's theory, decision theory, game theory, and quantum information theory. A comprehensive list of references facilitates further exploration of these topics. Throughout the book, numerous examples and exercises reinforce the presented concepts and techniques. In addition, the book is in a modular format, so each chapter covers its subject thoroughly and can be read independently. This structure affords flexibility for individualizing courses and teaching. Providing a solid foundation and overview of the various mathematical methods and applications in multidisciplinary research, Essentials of Mathematical Methods in Science and Engineering is an excellent text for courses in physics, science, mathematics, and engineering at the upper-undergraduate and graduate levels. It also serves as a useful reference for scientists and engineers who would like a practical review of mathematical methods.
Author | : Carl M. Bender |
Publisher | : Springer Science & Business Media |
Total Pages | : 605 |
Release | : 2013-03-09 |
Genre | : Mathematics |
ISBN | : 1475730691 |
A clear, practical and self-contained presentation of the methods of asymptotics and perturbation theory for obtaining approximate analytical solutions to differential and difference equations. Aimed at teaching the most useful insights in approaching new problems, the text avoids special methods and tricks that only work for particular problems. Intended for graduates and advanced undergraduates, it assumes only a limited familiarity with differential equations and complex variables. The presentation begins with a review of differential and difference equations, then develops local asymptotic methods for such equations, and explains perturbation and summation theory before concluding with an exposition of global asymptotic methods. Emphasizing applications, the discussion stresses care rather than rigor and relies on many well-chosen examples to teach readers how an applied mathematician tackles problems. There are 190 computer-generated plots and tables comparing approximate and exact solutions, over 600 problems of varying levels of difficulty, and an appendix summarizing the properties of special functions.
Author | : Brent J. Lewis |
Publisher | : Butterworth-Heinemann |
Total Pages | : 434 |
Release | : 2021-05-20 |
Genre | : Mathematics |
ISBN | : 0128236825 |
Advanced Mathematics for Engineering Students: The Essential Toolbox provides a concise treatment for applied mathematics. Derived from two semester advanced mathematics courses at the author's university, the book delivers the mathematical foundation needed in an engineering program of study. Other treatments typically provide a thorough but somewhat complicated presentation where students do not appreciate the application. This book focuses on the development of tools to solve most types of mathematical problems that arise in engineering – a "toolbox for the engineer. It provides an important foundation but goes one step further and demonstrates the practical use of new technology for applied analysis with commercial software packages (e.g., algebraic, numerical and statistical). - Delivers a focused and concise treatment on the underlying theory and direct application of mathematical methods so that the reader has a collection of important mathematical tools that are easily understood and ready for application as a practicing engineer - The book material has been derived from class-tested courses presented over many years in applied mathematics for engineering students (all problem sets and exam questions given for the course(s) are included along with a solution manual) - Provides fundamental theory for applied mathematics while also introducing the application of commercial software packages as modern tools for engineering application, including: EXCEL (statistical analysis); MAPLE (symbolic and numeric computing environment); and COMSOL (finite element solver for ordinary and partial differential equations)
Author | : John Bird |
Publisher | : Routledge |
Total Pages | : 568 |
Release | : 2019-10-23 |
Genre | : Technology & Engineering |
ISBN | : 1000727041 |
This compendium of essential formulae, definitions, tables and general information provides the mathematical information required by engineering students, technicians, scientists and professionals in day-to-day engineering practice. A practical and versatile reference source, now in its fifth edition, the layout has been changed and streamlined to ensure the information is even more quickly and readily available – making it a handy companion on-site, in the office as well as for academic study. It also acts as a practical revision guide for those undertaking degree courses in engineering and science, and for BTEC Nationals, Higher Nationals and NVQs, where mathematics is an underpinning requirement of the course. All the essentials of engineering mathematics – from algebra, geometry and trigonometry to logic circuits, differential equations and probability – are covered, with clear and succinct explanations and illustrated with over 300 line drawings and 500 worked examples based in real-world application. The emphasis throughout the book is on providing the practical tools needed to solve mathematical problems quickly and efficiently in engineering contexts. John Bird’s presentation of this core material puts all the answers at your fingertips.