Essays In The History Of Lie Groups And Algebraic Groups
Download Essays In The History Of Lie Groups And Algebraic Groups full books in PDF, epub, and Kindle. Read online free Essays In The History Of Lie Groups And Algebraic Groups ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Armand Borel |
Publisher | : American Mathematical Soc. |
Total Pages | : 184 |
Release | : 2001 |
Genre | : Mathematics |
ISBN | : 0821802887 |
Algebraic groups and Lie groups are important in most major areas of mathematics, occuring in diverse roles such as the symmetries of differential equations and as central figures in the Langlands program for number theory. In this book, Professor Borel looks at the development of the theory of Lie groups and algebraic groups, highlighting the evolution from the almost purely local theory at the start to the global theory that we know today. As the starting point of this passagefrom local to global, the author takes Lie's theory of local analytic transformation groups and Lie algebras. He then follows the globalization of the process in its two most important frameworks: (transcendental) differential geometry and algebraic geometry. Chapters II to IV are devoted to the former,Chapters V to VIII, to the latter.The essays in the first part of the book survey various proofs of the full reducibility of linear representations of $SL 2M$, the contributions H. Weyl to representation and invariant theory for Lie groups, and conclude with a chapter on E. Cartan's theory of symmetric spaces and Lie groups in the large.The second part of the book starts with Chapter V describing the development of the theory of linear algebraic groups in the 19th century. Many of the main contributions here are due to E. Study, E. Cartan, and above all, to L. Maurer. After being abandoned for nearly 50 years, the theory was revived by Chevalley and Kolchin and then further developed by many others. This is the focus of Chapter VI. The book concludes with two chapters on various aspects of the works of Chevalley on Lie groupsand algebraic groups and Kolchin on algebraic groups and the Galois theory of differential fields.The author brings a unique perspective to this study. As an important developer of some of the modern elements of both the differential geometric and the algebraic geometric sides of the theory, he has a particularly deep appreciation of the underlying mathematics. His lifelong involvement and his historical research in the subject give him a special appreciation of the story of its development.
Author | : Walter Ferrer Santos |
Publisher | : CRC Press |
Total Pages | : 472 |
Release | : 2005-04-26 |
Genre | : Mathematics |
ISBN | : 1420030795 |
Actions and Invariants of Algebraic Groups presents a self-contained introduction to geometric invariant theory that links the basic theory of affine algebraic groups to Mumford's more sophisticated theory. The authors systematically exploit the viewpoint of Hopf algebra theory and the theory of comodules to simplify and compactify many of the rele
Author | : Walter Ricardo Ferrer Santos |
Publisher | : CRC Press |
Total Pages | : 709 |
Release | : 2017-09-19 |
Genre | : Mathematics |
ISBN | : 1351644777 |
Actions and Invariants of Algebraic Groups, Second Edition presents a self-contained introduction to geometric invariant theory starting from the basic theory of affine algebraic groups and proceeding towards more sophisticated dimensions." Building on the first edition, this book provides an introduction to the theory by equipping the reader with the tools needed to read advanced research in the field. Beginning with commutative algebra, algebraic geometry and the theory of Lie algebras, the book develops the necessary background of affine algebraic groups over an algebraically closed field, and then moves toward the algebraic and geometric aspects of modern invariant theory and quotients.
Author | : Claudio Procesi |
Publisher | : Springer Science & Business Media |
Total Pages | : 616 |
Release | : 2007-10-17 |
Genre | : Mathematics |
ISBN | : 0387289291 |
Lie groups has been an increasing area of focus and rich research since the middle of the 20th century. In Lie Groups: An Approach through Invariants and Representations, the author's masterful approach gives the reader a comprehensive treatment of the classical Lie groups along with an extensive introduction to a wide range of topics associated with Lie groups: symmetric functions, theory of algebraic forms, Lie algebras, tensor algebra and symmetry, semisimple Lie algebras, algebraic groups, group representations, invariants, Hilbert theory, and binary forms with fields ranging from pure algebra to functional analysis. By covering sufficient background material, the book is made accessible to a reader with a relatively modest mathematical background. Historical information, examples, exercises are all woven into the text. This unique exposition is suitable for a broad audience, including advanced undergraduates, graduates, mathematicians in a variety of areas from pure algebra to functional analysis and mathematical physics.
Author | : Anthony W. Knapp |
Publisher | : Springer Science & Business Media |
Total Pages | : 844 |
Release | : 2002-08-21 |
Genre | : Mathematics |
ISBN | : 9780817642594 |
This book takes the reader from the end of introductory Lie group theory to the threshold of infinite-dimensional group representations. Merging algebra and analysis throughout, the author uses Lie-theoretic methods to develop a beautiful theory having wide applications in mathematics and physics. The book initially shares insights that make use of actual matrices; it later relies on such structural features as properties of root systems.
Author | : Thomas Hawkins |
Publisher | : Springer Science & Business Media |
Total Pages | : 578 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461212022 |
The great Norwegian mathematician Sophus Lie developed the general theory of transformations in the 1870s, and the first part of the book properly focuses on his work. In the second part the central figure is Wilhelm Killing, who developed structure and classification of semisimple Lie algebras. The third part focuses on the developments of the representation of Lie algebras, in particular the work of Elie Cartan. The book concludes with the work of Hermann Weyl and his contemporaries on the structure and representation of Lie groups which serves to bring together much of the earlier work into a coherent theory while at the same time opening up significant avenues for further work.
Author | : Katrin Tent |
Publisher | : Cambridge University Press |
Total Pages | : 327 |
Release | : 2008-10-16 |
Genre | : Mathematics |
ISBN | : 0521717884 |
Many areas of mathematics were deeply influenced or even founded by Hermann Weyl, including geometric foundations of manifolds and physics, topological groups, Lie groups and representation theory, harmonic analysis and analytic number theory as well as foundations of mathematics. In this volume, leading experts present his lasting influence on current mathematics, often connecting Weyl's theorems with cutting edge research in dynamical systems, invariant theory, and partial differential equations. In a broad and accessible presentation, survey chapters describe the historical development of each area alongside up-to-the-minute results, focussing on the mathematical roots evident within Weyl's work.
Author | : Gustav I. Lehrer |
Publisher | : Cambridge University Press |
Total Pages | : 303 |
Release | : 2009-08-13 |
Genre | : Mathematics |
ISBN | : 0521749891 |
A unitary reflection is a linear transformation of a complex vector space that fixes each point in a hyperplane. Intuitively, it resembles the transformation an image undergoes when it is viewed through a kaleidoscope, or an arrangement of mirrors. This book gives a complete classification of all finite groups which are generated by unitary reflections, using the method of line systems. Irreducible groups are studied in detail, and are identified with finite linear groups. The new invariant theoretic proof of Steinberg's fixed point theorem is treated fully. The same approach is used to develop the theory of eigenspaces of elements of reflection groups and their twisted analogues. This includes an extension of Springer's theory of regular elements to reflection cosets. An appendix outlines links to representation theory, topology and mathematical physics. Containing over 100 exercises, ranging in difficulty from elementary to research level, this book is ideal for honours and graduate students, or for researchers in algebra, topology and mathematical physics. Book jacket.
Author | : Dorian Goldfeld |
Publisher | : Cambridge University Press |
Total Pages | : 65 |
Release | : 2006-08-03 |
Genre | : Mathematics |
ISBN | : 1139456202 |
L-functions associated to automorphic forms encode all classical number theoretic information. They are akin to elementary particles in physics. This book provides an entirely self-contained introduction to the theory of L-functions in a style accessible to graduate students with a basic knowledge of classical analysis, complex variable theory, and algebra. Also within the volume are many new results not yet found in the literature. The exposition provides complete detailed proofs of results in an easy-to-read format using many examples and without the need to know and remember many complex definitions. The main themes of the book are first worked out for GL(2,R) and GL(3,R), and then for the general case of GL(n,R). In an appendix to the book, a set of Mathematica functions is presented, designed to allow the reader to explore the theory from a computational point of view.
Author | : Eberhard Zeidler |
Publisher | : Springer Science & Business Media |
Total Pages | : 1141 |
Release | : 2011-08-17 |
Genre | : Mathematics |
ISBN | : 3642224210 |
In this third volume of his modern introduction to quantum field theory, Eberhard Zeidler examines the mathematical and physical aspects of gauge theory as a principle tool for describing the four fundamental forces which act in the universe: gravitative, electromagnetic, weak interaction and strong interaction. Volume III concentrates on the classical aspects of gauge theory, describing the four fundamental forces by the curvature of appropriate fiber bundles. This must be supplemented by the crucial, but elusive quantization procedure. The book is arranged in four sections, devoted to realizing the universal principle force equals curvature: Part I: The Euclidean Manifold as a Paradigm Part II: Ariadne's Thread in Gauge Theory Part III: Einstein's Theory of Special Relativity Part IV: Ariadne's Thread in Cohomology For students of mathematics the book is designed to demonstrate that detailed knowledge of the physical background helps to reveal interesting interrelationships among diverse mathematical topics. Physics students will be exposed to a fairly advanced mathematics, beyond the level covered in the typical physics curriculum. Quantum Field Theory builds a bridge between mathematicians and physicists, based on challenging questions about the fundamental forces in the universe (macrocosmos), and in the world of elementary particles (microcosmos).