Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms

Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms
Author: Robert Edward Bowen
Publisher: Springer Science & Business Media
Total Pages: 84
Release: 2008-04-18
Genre: Mathematics
ISBN: 3540776052

For this printing of R. Bowen's book, J.-R. Chazottes has retyped it in TeX for easier reading, thereby correcting typos and bibliographic details. From the Preface by D. Ruelle: "Rufus Bowen has left us a masterpiece of mathematical exposition... Here a number of results which were new at the time are presented in such a clear and lucid style that Bowen's monograph immediately became a classic. More than thirty years later, many new results have been proved in this area, but the volume is as useful as ever because it remains the best introduction to the basics of the ergodic theory of hyperbolic systems."

Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms

Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms
Author: Robert Edward Bowen
Publisher: Springer
Total Pages: 80
Release: 2009-08-29
Genre: Mathematics
ISBN: 9783540848875

For this printing of R. Bowen's book, J.-R. Chazottes has retyped it in TeX for easier reading, thereby correcting typos and bibliographic details. From the Preface by D. Ruelle: "Rufus Bowen has left us a masterpiece of mathematical exposition... Here a number of results which were new at the time are presented in such a clear and lucid style that Bowen's monograph immediately became a classic. More than thirty years later, many new results have been proved in this area, but the volume is as useful as ever because it remains the best introduction to the basics of the ergodic theory of hyperbolic systems."

The Theory of Chaotic Attractors

The Theory of Chaotic Attractors
Author: Brian R. Hunt
Publisher: Springer Science & Business Media
Total Pages: 528
Release: 2004-01-08
Genre: Mathematics
ISBN: 9780387403496

The editors felt that the time was right for a book on an important topic, the history and development of the notions of chaotic attractors and their "natu ral" invariant measures. We wanted to bring together a coherent collection of readable, interesting, outstanding papers for detailed study and comparison. We hope that this book will allow serious graduate students to hold seminars to study how the research in this field developed. Limitation of space forced us painfully to exclude many excellent, relevant papers, and the resulting choice reflects the interests of the editors. Since James Alan Yorke was born August 3, 1941, we chose to have this book commemorate his sixtieth birthday, honoring his research in this field. The editors are four of his collaborators. We would particularly like to thank Achi Dosanjh (senior editor math ematics), Elizabeth Young (assistant editor mathematics), Joel Ariaratnam (mathematics editorial), and Yong-Soon Hwang (book production editor) from Springer Verlag in New York for their efforts in publishing this book.

Encyclopedia of General Topology

Encyclopedia of General Topology
Author: K.P. Hart
Publisher: Elsevier
Total Pages: 537
Release: 2003-11-18
Genre: Mathematics
ISBN: 0080530869

This book is designed for the reader who wants to get a general view of the terminology of General Topology with minimal time and effort. The reader, whom we assume to have only a rudimentary knowledge of set theory, algebra and analysis, will be able to find what they want if they will properly use the index. However, this book contains very few proofs and the reader who wants to study more systematically will find sufficiently many references in the book.Key features:• More terms from General Topology than any other book ever published• Short and informative articles• Authors include the majority of top researchers in the field• Extensive indexing of terms

Smooth Ergodic Theory and Its Applications

Smooth Ergodic Theory and Its Applications
Author: A. B. Katok
Publisher: American Mathematical Soc.
Total Pages: 895
Release: 2001
Genre: Mathematics
ISBN: 0821826824

During the past decade, there have been several major new developments in smooth ergodic theory, which have attracted substantial interest to the field from mathematicians as well as scientists using dynamics in their work. In spite of the impressive literature, it has been extremely difficult for a student-or even an established mathematician who is not an expert in the area-to acquire a working knowledge of smooth ergodic theory and to learn how to use its tools. Accordingly, the AMS Summer Research Institute on Smooth Ergodic Theory and Its Applications (Seattle, WA) had a strong educational component, including ten mini-courses on various aspects of the topic that were presented by leading experts in the field. This volume presents the proceedings of that conference. Smooth ergodic theory studies the statistical properties of differentiable dynamical systems, whose origin traces back to the seminal works of Poincare and later, many great mathematicians who made contributions to the development of the theory. The main topic of this volume, smooth ergodic theory, especially the theory of nonuniformly hyperbolic systems, provides the principle paradigm for the rigorous study of complicated or chaotic behavior in deterministic systems. This paradigm asserts that if a non-linear dynamical system exhibits sufficiently pronounced exponential behavior, then global properties of the system can be deduced from studying the linearized system. One can then obtain detailed information on topological properties (such as the growth of periodic orbits, topological entropy, and dimension of invariant sets including attractors), as well as statistical properties (such as the existence of invariant measures, asymptotic behavior of typical orbits, ergodicity, mixing, decay of corre This volume serves a two-fold purpose: first, it gives a useful gateway to smooth ergodic theory for students and nonspecialists, and second, it provides a state-of-the-art report on important current aspects of the subject. The book is divided into three parts: lecture notes consisting of three long expositions with proofs aimed to serve as a comprehensive and self-contained introduction to a particular area of smooth ergodic theory; thematic sections based on mini-courses or surveys held at the conference; and original contributions presented at the meeting or closely related to the topics that were discussed there.

Ergodic Theory and Dynamical Systems

Ergodic Theory and Dynamical Systems
Author: Idris Assani
Publisher: Walter de Gruyter
Total Pages: 288
Release: 2013-12-12
Genre: Mathematics
ISBN: 3110298201

This is the proceedings of the workshop on recent developments in ergodic theory and dynamical systems on March 2011 and March 2012 at the University of North Carolina at Chapel Hill. The articles in this volume cover several aspects of vibrant research in ergodic theory and dynamical systems. It contains contributions to Teichmuller dynamics, interval exchange transformations, continued fractions, return times averages, Furstenberg Fractals, fractal geometry of non-uniformly hyperbolic horseshoes, convergence along the sequence of squares, adic and horocycle flows, and topological flows. These contributions illustrate the connections between ergodic theory and dynamical systems, number theory, harmonic analysis, probability, and algebra. Two surveys are included which give a nice introduction for interested young or senior researcher to some active research areas. Overall this volume provides a very useful blend of techniques and methods as well as directions of research on general convergence phenomena in ergodic theory and dynamical systems.

Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems

Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems
Author: Bernold Fiedler
Publisher: Springer Science & Business Media
Total Pages: 816
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642565891

Presenting very recent results in a major research area, this book is addressed to experts and non-experts in the mathematical community alike. The applied issues range from crystallization and dendrite growth to quantum chaos, conveying their significance far into the neighboring disciplines of science.

Foundations of Ergodic Theory

Foundations of Ergodic Theory
Author: Marcelo Viana
Publisher: Cambridge University Press
Total Pages: 547
Release: 2016-02-15
Genre: Mathematics
ISBN: 1316445429

Rich with examples and applications, this textbook provides a coherent and self-contained introduction to ergodic theory, suitable for a variety of one- or two-semester courses. The authors' clear and fluent exposition helps the reader to grasp quickly the most important ideas of the theory, and their use of concrete examples illustrates these ideas and puts the results into perspective. The book requires few prerequisites, with background material supplied in the appendix. The first four chapters cover elementary material suitable for undergraduate students – invariance, recurrence and ergodicity – as well as some of the main examples. The authors then gradually build up to more sophisticated topics, including correlations, equivalent systems, entropy, the variational principle and thermodynamical formalism. The 400 exercises increase in difficulty through the text and test the reader's understanding of the whole theory. Hints and solutions are provided at the end of the book.