Entropy Methods for Diffusive Partial Differential Equations

Entropy Methods for Diffusive Partial Differential Equations
Author: Ansgar Jüngel
Publisher: Springer
Total Pages: 146
Release: 2016-06-17
Genre: Mathematics
ISBN: 3319342193

This book presents a range of entropy methods for diffusive PDEs devised by many researchers in the course of the past few decades, which allow us to understand the qualitative behavior of solutions to diffusive equations (and Markov diffusion processes). Applications include the large-time asymptotics of solutions, the derivation of convex Sobolev inequalities, the existence and uniqueness of weak solutions, and the analysis of discrete and geometric structures of the PDEs. The purpose of the book is to provide readers an introduction to selected entropy methods that can be found in the research literature. In order to highlight the core concepts, the results are not stated in the widest generality and most of the arguments are only formal (in the sense that the functional setting is not specified or sufficient regularity is supposed). The text is also suitable for advanced master and PhD students and could serve as a textbook for special courses and seminars.

Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples

Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples
Author: Robert Klöfkorn
Publisher: Springer Nature
Total Pages: 727
Release: 2020-06-09
Genre: Computers
ISBN: 3030436519

The proceedings of the 9th conference on "Finite Volumes for Complex Applications" (Bergen, June 2020) are structured in two volumes. The first volume collects the focused invited papers, as well as the reviewed contributions from internationally leading researchers in the field of analysis of finite volume and related methods. Topics covered include convergence and stability analysis, as well as investigations of these methods from the point of view of compatibility with physical principles. Altogether, a rather comprehensive overview is given on the state of the art in the field. The properties of the methods considered in the conference give them distinguished advantages for a number of applications. These include fluid dynamics, magnetohydrodynamics, structural analysis, nuclear physics, semiconductor theory, carbon capture utilization and storage, geothermal energy and further topics. The second volume covers reviewed contributions reporting successful applications of finite volume and related methods in these fields. The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability, making the finite volume methods compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. The book is a valuable resource for researchers, PhD and master’s level students in numerical analysis, scientific computing and related fields such as partial differential equations, as well as engineers working in numerical modeling and simulations.

PDE Dynamics

PDE Dynamics
Author: Christian Kuehn
Publisher: SIAM
Total Pages: 260
Release: 2019-04-10
Genre: Mathematics
ISBN: 1611975662

This book provides an overview of the myriad methods for applying dynamical systems techniques to PDEs and highlights the impact of PDE methods on dynamical systems. Also included are many nonlinear evolution equations, which have been benchmark models across the sciences, and examples and techniques to strengthen preparation for research. PDE Dynamics: An Introduction is intended for senior undergraduate students, beginning graduate students, and researchers in applied mathematics, theoretical physics, and adjacent disciplines. Structured as a textbook or seminar reference, it can be used in courses titled Dynamics of PDEs, PDEs 2, Dynamical Systems 2, Evolution Equations, or Infinite-Dimensional Dynamics.

Collected Papers in Honor of Yoshihiro Shibata

Collected Papers in Honor of Yoshihiro Shibata
Author: Tohru Ozawa
Publisher: Springer Nature
Total Pages: 396
Release: 2023-01-01
Genre: Mathematics
ISBN: 3031192524

Yoshihiro Shibata has made many significant contributions to the area of mathematical fluid mechanics over the course of his illustrious career, including landmark work on the Navier-Stokes equations. The papers collected here — on the occasion of his 70th birthday — are written by world-renowned researchers and celebrate his decades of outstanding achievements.

Parallel Solution of Partial Differential Equations

Parallel Solution of Partial Differential Equations
Author: Petter Bjorstad
Publisher: Springer Science & Business Media
Total Pages: 309
Release: 2012-12-06
Genre: Mathematics
ISBN: 146121176X

This IMA Volume in Mathematics and its Applications PARALLEL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS is based on the proceedings of a workshop with the same title. The work shop was an integral part of the 1996-97IMA program on "MATHEMAT ICS IN HIGH-PERFORMANCE COMPUTING." I would like to thank Petter Bj0rstad of the Institutt for Informatikk, University of Bergen and Mitchell Luskin of the School of Mathematics, University of Minnesota for their excellent work as organizers of the meeting and for editing the proceedings. I also take this opportunity to thank the National Science Founda tion (NSF), Department of Energy (DOE), and the Army Research Office (ARO), whose financial support made the workshop possible. Willard Miller, Jr., Professor and Director v PREFACE The numerical solution of partial differential equations has been of major importance to the development of many technologies and has been the target of much of the development of parallel computer hardware and software. Parallel computers offer the promise of greatly increased perfor mance and the routine calculation of previously intractable problems. The papers in this volume were presented at the IMA workshop on the Paral lel Solution of PDE held during June 9-13, 1997. The workshop brought together leading numerical analysts, computer scientists, and engineers to assess the state-of-the-art and to consider future directions.

New Trends in Analysis and Geometry

New Trends in Analysis and Geometry
Author: Mohamed A. Khamsi
Publisher: Cambridge Scholars Publishing
Total Pages: 401
Release: 2020-01-24
Genre: Mathematics
ISBN: 1527546128

This unique mathematical volume brings together geometers, analysts, differential equations specialists and graph-theorists to provide a glimpse on recent mathematical trends whose commonalities have hitherto remained, for the most part, unnoticed. The applied mathematician will be pleasantly surprised with the interpretation of a voting system in terms of the fixed points of a mapping given in the book, as much as the classical analyst will be enthusiastic to find detailed discussions on the generalization of the notion of metric space, in which the metric takes values on an abstract monoid. Classical themes on fixed point theory are adapted to the diverse setting of graph theory, thus uncovering a set of tools whose power and versatility will be appreciated by mathematicians working on either area. The volume also includes recent results on variable exponent spaces which reveal much-needed connections with partial differential equations, while the incipient field of variational inequalities on manifolds, also explored here, will be of interest to researchers from a variety of fields.

Partial Differential Equations and Inverse Problems

Partial Differential Equations and Inverse Problems
Author: Carlos Conca
Publisher: American Mathematical Soc.
Total Pages: 426
Release: 2004
Genre: Mathematics
ISBN: 0821834487

This proceedings volume is a collection of articles from the Pan-American Advanced Studies Institute on partial differential equations, nonlinear analysis and inverse problems held in Santiago (Chile). Interactions among partial differential equations, nonlinear analysis, and inverse problems have produced remarkable developments over the last couple of decades. This volume contains survey articles reflecting the work of leading experts who presented minicourses at the event. Contributors include J. Busca, Y. Capdeboscq, M.S. Vogelius, F. A. Grunbaum, L. F. Matusevich, M. de Hoop, and P. Kuchment. The volume is suitable for graduate students and researchers interested in partial differential equations and their applications in nonlinear analysis and inverse problems.

From Particle Systems to Partial Differential Equations

From Particle Systems to Partial Differential Equations
Author: Cédric Bernardin
Publisher: Springer
Total Pages: 321
Release: 2014-05-17
Genre: Mathematics
ISBN: 3642542719

This book presents the proceedings of the international conference Particle Systems and Partial Differential Equations I, which took place at the Centre of Mathematics of the University of Minho, Braga, Portugal, from the 5th to the 7th of December, 2012. The purpose of the conference was to bring together world leaders to discuss their topics of expertise and to present some of their latest research developments in those fields. Among the participants were researchers in probability, partial differential equations and kinetics theory. The aim of the meeting was to present to a varied public the subject of interacting particle systems, its motivation from the viewpoint of physics and its relation with partial differential equations or kinetics theory and to stimulate discussions and possibly new collaborations among researchers with different backgrounds. The book contains lecture notes written by François Golse on the derivation of hydrodynamic equations (compressible and incompressible Euler and Navier-Stokes) from the Boltzmann equation, and several short papers written by some of the participants in the conference. Among the topics covered by the short papers are hydrodynamic limits; fluctuations; phase transitions; motions of shocks and anti shocks in exclusion processes; large number asymptotics for systems with self-consistent coupling; quasi-variational inequalities; unique continuation properties for PDEs and others. The book will benefit probabilists, analysts and mathematicians who are interested in statistical physics, stochastic processes, partial differential equations and kinetics theory, along with physicists.

Splitting Methods for Partial Differential Equations with Rough Solutions

Splitting Methods for Partial Differential Equations with Rough Solutions
Author: Helge Holden
Publisher: European Mathematical Society
Total Pages: 238
Release: 2010
Genre: Mathematics
ISBN: 9783037190784

Operator splitting (or the fractional steps method) is a very common tool to analyze nonlinear partial differential equations both numerically and analytically. By applying operator splitting to a complicated model one can often split it into simpler problems that can be analyzed separately. In this book one studies operator splitting for a family of nonlinear evolution equations, including hyperbolic conservation laws and degenerate convection-diffusion equations. Common for these equations is the prevalence of rough, or non-smooth, solutions, e.g., shocks. Rigorous analysis is presented, showing that both semi-discrete and fully discrete splitting methods converge. For conservation laws, sharp error estimates are provided and for convection-diffusion equations one discusses a priori and a posteriori correction of entropy errors introduced by the splitting. Numerical methods include finite difference and finite volume methods as well as front tracking. The theory is illustrated by numerous examples. There is a dedicated Web page that provides MATLABR codes for many of the examples. The book is suitable for graduate students and researchers in pure and applied mathematics, physics, and engineering.

Partial Differential Equations

Partial Differential Equations
Author: D. Sloan
Publisher: Elsevier
Total Pages: 480
Release: 2012-12-02
Genre: Mathematics
ISBN: 0080929567

/homepage/sac/cam/na2000/index.html7-Volume Set now available at special set price ! Over the second half of the 20th century the subject area loosely referred to as numerical analysis of partial differential equations (PDEs) has undergone unprecedented development. At its practical end, the vigorous growth and steady diversification of the field were stimulated by the demand for accurate and reliable tools for computational modelling in physical sciences and engineering, and by the rapid development of computer hardware and architecture. At the more theoretical end, the analytical insight into the underlying stability and accuracy properties of computational algorithms for PDEs was deepened by building upon recent progress in mathematical analysis and in the theory of PDEs. To embark on a comprehensive review of the field of numerical analysis of partial differential equations within a single volume of this journal would have been an impossible task. Indeed, the 16 contributions included here, by some of the foremost world authorities in the subject, represent only a small sample of the major developments. We hope that these articles will, nevertheless, provide the reader with a stimulating glimpse into this diverse, exciting and important field. The opening paper by Thomée reviews the history of numerical analysis of PDEs, starting with the 1928 paper by Courant, Friedrichs and Lewy on the solution of problems of mathematical physics by means of finite differences. This excellent survey takes the reader through the development of finite differences for elliptic problems from the 1930s, and the intense study of finite differences for general initial value problems during the 1950s and 1960s. The formulation of the concept of stability is explored in the Lax equivalence theorem and the Kreiss matrix lemmas. Reference is made to the introduction of the finite element method by structural engineers, and a description is given of the subsequent development and mathematical analysis of the finite element method with piecewise polynomial approximating functions. The penultimate section of Thomée's survey deals with `other classes of approximation methods', and this covers methods such as collocation methods, spectral methods, finite volume methods and boundary integral methods. The final section is devoted to numerical linear algebra for elliptic problems. The next three papers, by Bialecki and Fairweather, Hesthaven and Gottlieb and Dahmen, describe, respectively, spline collocation methods, spectral methods and wavelet methods. The work by Bialecki and Fairweather is a comprehensive overview of orthogonal spline collocation from its first appearance to the latest mathematical developments and applications. The emphasis throughout is on problems in two space dimensions. The paper by Hesthaven and Gottlieb presents a review of Fourier and Chebyshev pseudospectral methods for the solution of hyperbolic PDEs. Particular emphasis is placed on the treatment of boundaries, stability of time discretisations, treatment of non-smooth solutions and multidomain techniques. The paper gives a clear view of the advances that have been made over the last decade in solving hyperbolic problems by means of spectral methods, but it shows that many critical issues remain open. The paper by Dahmen reviews the recent rapid growth in the use of wavelet methods for PDEs. The author focuses on the use of adaptivity, where significant successes have recently been achieved. He describes the potential weaknesses of wavelet methods as well as the perceived strengths, thus giving a balanced view that should encourage the study of wavelet methods.