Entity Oriented Search
Download Entity Oriented Search full books in PDF, epub, and Kindle. Read online free Entity Oriented Search ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Krisztian Balog |
Publisher | : Springer |
Total Pages | : 358 |
Release | : 2018-10-02 |
Genre | : Computers |
ISBN | : 3319939351 |
This open access book covers all facets of entity-oriented search—where “search” can be interpreted in the broadest sense of information access—from a unified point of view, and provides a coherent and comprehensive overview of the state of the art. It represents the first synthesis of research in this broad and rapidly developing area. Selected topics are discussed in-depth, the goal being to establish fundamental techniques and methods as a basis for future research and development. Additional topics are treated at a survey level only, containing numerous pointers to the relevant literature. A roadmap for future research, based on open issues and challenges identified along the way, rounds out the book. The book is divided into three main parts, sandwiched between introductory and concluding chapters. The first two chapters introduce readers to the basic concepts, provide an overview of entity-oriented search tasks, and present the various types and sources of data that will be used throughout the book. Part I deals with the core task of entity ranking: given a textual query, possibly enriched with additional elements or structural hints, return a ranked list of entities. This core task is examined in a number of different variants, using both structured and unstructured data collections, and numerous query formulations. In turn, Part II is devoted to the role of entities in bridging unstructured and structured data. Part III explores how entities can enable search engines to understand the concepts, meaning, and intent behind the query that the user enters into the search box, and how they can provide rich and focused responses (as opposed to merely a list of documents)—a process known as semantic search. The final chapter concludes the book by discussing the limitations of current approaches, and suggesting directions for future research. Researchers and graduate students are the primary target audience of this book. A general background in information retrieval is sufficient to follow the material, including an understanding of basic probability and statistics concepts as well as a basic knowledge of machine learning concepts and supervised learning algorithms.
Author | : John R. Talburt |
Publisher | : Elsevier |
Total Pages | : 254 |
Release | : 2011-01-14 |
Genre | : Computers |
ISBN | : 0123819733 |
Entity Resolution and Information Quality presents topics and definitions, and clarifies confusing terminologies regarding entity resolution and information quality. It takes a very wide view of IQ, including its six-domain framework and the skills formed by the International Association for Information and Data Quality {IAIDQ). The book includes chapters that cover the principles of entity resolution and the principles of Information Quality, in addition to their concepts and terminology. It also discusses the Fellegi-Sunter theory of record linkage, the Stanford Entity Resolution Framework, and the Algebraic Model for Entity Resolution, which are the major theoretical models that support Entity Resolution. In relation to this, the book briefly discusses entity-based data integration (EBDI) and its model, which serve as an extension of the Algebraic Model for Entity Resolution. There is also an explanation of how the three commercial ER systems operate and a description of the non-commercial open-source system known as OYSTER. The book concludes by discussing trends in entity resolution research and practice. Students taking IT courses and IT professionals will find this book invaluable. - First authoritative reference explaining entity resolution and how to use it effectively - Provides practical system design advice to help you get a competitive advantage - Includes a companion site with synthetic customer data for applicatory exercises, and access to a Java-based Entity Resolution program.
Author | : Joemon M. Jose |
Publisher | : Springer Nature |
Total Pages | : 709 |
Release | : 2020-04-10 |
Genre | : Computers |
ISBN | : 3030454428 |
This two-volume set LNCS 12035 and 12036 constitutes the refereed proceedings of the 42nd European Conference on IR Research, ECIR 2020, held in Lisbon, Portugal, in April 2020.* The 55 full papers presented together with 8 reproducibility papers, 46 short papers, 10 demonstration papers, 12 invited CLEF papers, 7 doctoral consortium papers, 4 workshop papers, and 3 tutorials were carefully reviewed and selected from 457 submissions. They were organized in topical sections named: Part I: deep learning I; entities; evaluation; recommendation; information extraction; deep learning II; retrieval; multimedia; deep learning III; queries; IR – general; question answering, prediction, and bias; and deep learning IV. Part II: reproducibility papers; short papers; demonstration papers; CLEF organizers lab track; doctoral consortium papers; workshops; and tutorials. *Due to the COVID-19 pandemic, this conference was held virtually.
Author | : Richard Fabian |
Publisher | : Richard Fabian |
Total Pages | : 308 |
Release | : 2018-09-29 |
Genre | : |
ISBN | : 9781916478701 |
The projects tackled by the software development industry have grown in scale and complexity. Costs are increasing along with the number of developers. Power bills for distributed projects have reached the point where optimisations pay literal dividends. Over the last 10 years, a software development movement has gained traction, a movement founded in games development. The limited resources and complexity of the software and hardware needed to ship modern game titles demanded a different approach. Data-oriented design is inspired by high-performance computing techniques, database design, and functional programming values. It provides a practical methodology that reduces complexity while improving performance of both your development team and your product. Understand the goal, understand the data, understand the hardware, develop the solution. This book presents foundations and principles helping to build a deeper understanding of data-oriented design. It provides instruction on the thought processes involved when considering data as the primary detail of any project.
Author | : Cathal Gurrin |
Publisher | : Springer Science & Business Media |
Total Pages | : 696 |
Release | : 2010-03-18 |
Genre | : Computers |
ISBN | : 3642122744 |
This book constitutes the refereed proceedings of the 32nd annual European Conference on Information Retrieval Research, ECIR 2010, held in Milton Keynes, UK, in March 2010. The 44 revised full papers and 23 poster papers presented together with the keynote lecture, 5 tool demonstrations and the abstracts of 3 invited lectures were carefully reviewed and selected from 202 full research paper submissions and 73 poster/demo submissions. The papers are organized in topical sections on NLP and text mining, Web IR, evaluation, multimedia IR, distributed IR and performance issues, IR theory and formal models, personalization and recommendation, domain-specific IR and CLIR, as well as user issues.
Author | : Gerti Kappel |
Publisher | : Springer Science & Business Media |
Total Pages | : 697 |
Release | : 2011-11-29 |
Genre | : Computers |
ISBN | : 3642255345 |
This book constitutes the refereed proceedings of the 9th International Conference on Service-Oriented Computing, ICSOC 2011, held in Paphos, Cyprus, in December 2011. The 54 revised papers presented were carefully reviewed and selected from 184 submissions. The papers are organized in topical sections on business process modeling, quality of service, formal methods, XaaS computing, service discovery, service security and trust, service runtime infrastructures and service applications.
Author | : Jaap Kamps |
Publisher | : Springer Nature |
Total Pages | : 635 |
Release | : 2023-03-16 |
Genre | : Computers |
ISBN | : 3031282418 |
The three-volume set LNCS 13980, 13981 and 13982 constitutes the refereed proceedings of the 45th European Conference on IR Research, ECIR 2023, held in Dublin, Ireland, during April 2-6, 2023. The 65 full papers, 41 short papers, 19 demonstration papers, 12 reproducibility papers consortium papers, 7 tutorial papers, and 10 doctorial consortium papers were carefully reviewed and selected from 489 submissions. The book also contains, 8 workshop summaries and 13 CLEF Lab descriptions. The accepted papers cover the state of the art in information retrieval focusing on user aspects, system and foundational aspects, machine learning, applications, evaluation, new social and technical challenges, and other topics of direct or indirect relevance to search.
Author | : Pavel Serdyukov |
Publisher | : Springer |
Total Pages | : 919 |
Release | : 2013-03-12 |
Genre | : Computers |
ISBN | : 3642369731 |
This book constitutes the proceedings of the 35th European Conference on IR Research, ECIR 2013, held in Moscow, Russia, in March 2013. The 55 full papers, 38 poster papers and 10 demonstrations presented in this volume were carefully reviewed and selected from 287 submissions. The papers are organized in the following topical sections: user aspects; multimedia and cross-media IR; data mining; IR theory and formal models; IR system architectures; classification; Web; event detection; temporal IR, and microblog search. Also included are 4 tutorial and 2 workshop presentations.
Author | : Charu C. Aggarwal |
Publisher | : Springer |
Total Pages | : 512 |
Release | : 2018-08-25 |
Genre | : Computers |
ISBN | : 3319944630 |
This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.
Author | : Charu C. Aggarwal |
Publisher | : Springer Nature |
Total Pages | : 583 |
Release | : 2022-05-04 |
Genre | : Computers |
ISBN | : 3030966232 |
This second edition textbook covers a coherently organized framework for text analytics, which integrates material drawn from the intersecting topics of information retrieval, machine learning, and natural language processing. Particular importance is placed on deep learning methods. The chapters of this book span three broad categories:1. Basic algorithms: Chapters 1 through 7 discuss the classical algorithms for text analytics such as preprocessing, similarity computation, topic modeling, matrix factorization, clustering, classification, regression, and ensemble analysis. 2. Domain-sensitive learning and information retrieval: Chapters 8 and 9 discuss learning models in heterogeneous settings such as a combination of text with multimedia or Web links. The problem of information retrieval and Web search is also discussed in the context of its relationship with ranking and machine learning methods. 3. Natural language processing: Chapters 10 through 16 discuss various sequence-centric and natural language applications, such as feature engineering, neural language models, deep learning, transformers, pre-trained language models, text summarization, information extraction, knowledge graphs, question answering, opinion mining, text segmentation, and event detection. Compared to the first edition, this second edition textbook (which targets mostly advanced level students majoring in computer science and math) has substantially more material on deep learning and natural language processing. Significant focus is placed on topics like transformers, pre-trained language models, knowledge graphs, and question answering.