Engineering Mathematics Exposed

Engineering Mathematics Exposed
Author: Mary Attenborough
Publisher: McGraw-Hill Book Company Limited
Total Pages: 604
Release: 1994
Genre: Technology & Engineering
ISBN: 9780077079758

The most frequent students' criticism of mathematics courses is that they are not clearly relevant to their engineering studies. The most frequent lecturers' criticism is that students background knowledge is insufficient for a first year university course. This book offers an approach to Engineering Mathematics to redress both problems by relating all mathematics topics to their engineering context and by explaining all the crucial areas of background mathematics required.

Mathematics for Electrical Engineering and Computing

Mathematics for Electrical Engineering and Computing
Author: Mary P Attenborough
Publisher: Elsevier
Total Pages: 563
Release: 2003-06-30
Genre: Mathematics
ISBN: 0080473407

Mathematics for Electrical Engineering and Computing embraces many applications of modern mathematics, such as Boolean Algebra and Sets and Functions, and also teaches both discrete and continuous systems - particularly vital for Digital Signal Processing (DSP). In addition, as most modern engineers are required to study software, material suitable for Software Engineering - set theory, predicate and prepositional calculus, language and graph theory - is fully integrated into the book.Excessive technical detail and language are avoided, recognising that the real requirement for practising engineers is the need to understand the applications of mathematics in everyday engineering contexts. Emphasis is given to an appreciation of the fundamental concepts behind the mathematics, for problem solving and undertaking critical analysis of results, whether using a calculator or a computer.The text is backed up by numerous exercises and worked examples throughout, firmly rooted in engineering practice, ensuring that all mathematical theory introduced is directly relevant to real-world engineering. The book includes introductions to advanced topics such as Fourier analysis, vector calculus and random processes, also making this a suitable introductory text for second year undergraduates of electrical, electronic and computer engineering, undertaking engineering mathematics courses.Dr Attenborough is a former Senior Lecturer in the School of Electrical, Electronic and Information Engineering at South Bank University. She is currently Technical Director of The Webbery - Internet development company, Co. Donegal, Ireland. - Fundamental principles of mathematics introduced and applied in engineering practice, reinforced through over 300 examples directly relevant to real-world engineering

How Not to Be Wrong

How Not to Be Wrong
Author: Jordan Ellenberg
Publisher: Penguin Press
Total Pages: 480
Release: 2014-05-29
Genre: Mathematics
ISBN: 1594205221

A brilliant tour of mathematical thought and a guide to becoming a better thinker, How Not to Be Wrong shows that math is not just a long list of rules to be learned and carried out by rote. Math touches everything we do; It's what makes the world make sense. Using the mathematician's methods and hard-won insights-minus the jargon-professor and popular columnist Jordan Ellenberg guides general readers through his ideas with rigor and lively irreverence, infusing everything from election results to baseball to the existence of God and the psychology of slime molds with a heightened sense of clarity and wonder. Armed with the tools of mathematics, we can see the hidden structures beneath the messy and chaotic surface of our daily lives. How Not to Be Wrong shows us how--Publisher's description.

Further Engineering Mathematics

Further Engineering Mathematics
Author: K. A. Stroud
Publisher: Palgrave Macmillan
Total Pages: 1140
Release: 1990-06-01
Genre: Technology & Engineering
ISBN: 9780333526101

The purpose of this book is essentially to provide a sound second year course in mathematics appropriate to studies leading to BSc Engineering degrees. It is a companion volume to "Engineering Mathematics" which is for the first year. An ELBS edition is available.

Mathematics for Machine Learning

Mathematics for Machine Learning
Author: Marc Peter Deisenroth
Publisher: Cambridge University Press
Total Pages: 392
Release: 2020-04-23
Genre: Computers
ISBN: 1108569323

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Concrete Mathematics

Concrete Mathematics
Author: Ronald L. Graham
Publisher: Addison-Wesley Professional
Total Pages: 811
Release: 1994-02-28
Genre: Computers
ISBN: 0134389980

This book introduces the mathematics that supports advanced computer programming and the analysis of algorithms. The primary aim of its well-known authors is to provide a solid and relevant base of mathematical skills - the skills needed to solve complex problems, to evaluate horrendous sums, and to discover subtle patterns in data. It is an indispensable text and reference not only for computer scientists - the authors themselves rely heavily on it! - but for serious users of mathematics in virtually every discipline. Concrete Mathematics is a blending of CONtinuous and disCRETE mathematics. "More concretely," the authors explain, "it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems." The subject matter is primarily an expansion of the Mathematical Preliminaries section in Knuth's classic Art of Computer Programming, but the style of presentation is more leisurely, and individual topics are covered more deeply. Several new topics have been added, and the most significant ideas have been traced to their historical roots. The book includes more than 500 exercises, divided into six categories. Complete answers are provided for all exercises, except research problems, making the book particularly valuable for self-study. Major topics include: Sums Recurrences Integer functions Elementary number theory Binomial coefficients Generating functions Discrete probability Asymptotic methods This second edition includes important new material about mechanical summation. In response to the widespread use of the first edition as a reference book, the bibliography and index have also been expanded, and additional nontrivial improvements can be found on almost every page. Readers will appreciate the informal style of Concrete Mathematics. Particularly enjoyable are the marginal graffiti contributed by students who have taken courses based on this material. The authors want to convey not only the importance of the techniques presented, but some of the fun in learning and using them.

Cracking the code

Cracking the code
Author: UNESCO
Publisher: UNESCO Publishing
Total Pages: 82
Release: 2017-09-04
Genre:
ISBN: 9231002333

This report aims to 'crack the code' by deciphering the factors that hinder and facilitate girls' and women's participation, achievement and continuation in science, technology, engineering and mathematics (STEM) education and, in particular, what the education sector can do to promote girls' and women's interest in and engagement with STEM education and ultimately STEM careers.

Engineering Mathematics

Engineering Mathematics
Author: K. STROUD
Publisher: Springer
Total Pages: 951
Release: 2013-03-21
Genre: Mathematics
ISBN: 9781461596554

The purpose of this book is to provide a complete year's course in mathematics for those studying in the engineering, technical and scientific fields. The material has been specially written for courses lead ing to (i) Part I of B. Sc. Engineering Degrees, (ii) Higher National Diploma and Higher National Certificate in techno logical subjects, and for other courses of a comparable level. While formal proofs are included where necessary to promote understanding, the emphasis throughout is on providing the student with sound mathematical skills and with a working knowledge and appreciation of the basic con cepts involved. The programmed structure ensures that the book is highly suited for general class use and for individual self-study, and also provides a ready means for remedial work or subsequent revision. The book is the outcome of some eight years' work undertaken in the development of programmed learning techniques in the Department of Mathematics at the Lanchester College of Technology, Coventry. For the J1ast four years, the whole of the mathematics of the first year of various Engineering Degree courses has been presented in programmed form, in conjunction with seminar and tutorial periods. The results obtained have proved to be highly satisfactory, and further extension and development of these learning techniques are being pursued. Each programme has been extensively validated before being produced in its final form and has consistently reached a success level above 80/80, i. e.

Linear Algebra Done Right

Linear Algebra Done Right
Author: Sheldon Axler
Publisher: Springer Science & Business Media
Total Pages: 276
Release: 1997-07-18
Genre: Mathematics
ISBN: 9780387982595

This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.