Selected Topics in Intelligent Chips with Emerging Devices, Circuits and Systems

Selected Topics in Intelligent Chips with Emerging Devices, Circuits and Systems
Author: Alex James
Publisher: CRC Press
Total Pages: 250
Release: 2023-04-03
Genre: Technology & Engineering
ISBN: 1000873757

Memristors have provided a new direction of thinking for circuit designers to overcome the limits of scalability and for thinking of building systems beyond Moore’s law. Over the last decade, there has been a significant number of innovations in using memristors for building neural networks through analog computing, in-memory computing, and stochastic computing approaches. The emergence of intelligent integrated circuits is inevitable for the future of integrated circuit applications. This book provides a collection of talks conducted as part of the IEEE Seasonal School on Circuits and System, having a focus on Intelligence in Chip: Tomorrow of Integrated Circuits. Technical topics discussed in the book include: Edge of Chaos Theory Explains Complex Phenomena in Memristor Circuits Analog Memristive Computing Designing energy efficient neo-cortex system with on-device learning Integrated sensors Challenges and recent advances in NVM based Neuromorphic Computing ICs In-memory Computing (for deep learning) Deep learning with Spiking Neural Networks Computational Intelligence for Designing Integrated Circuits and Systems Neurochip Design, Modeling, and Applications

Artificial Intelligence Applications and Reconfigurable Architectures

Artificial Intelligence Applications and Reconfigurable Architectures
Author: Anuradha D. Thakare
Publisher: John Wiley & Sons
Total Pages: 245
Release: 2023-03-21
Genre: Computers
ISBN: 1119857295

ARTIFICIAL INTELLIGENCE APPLICATIONS and RECONFIGURABLE ARCHITECTURES The primary goal of this book is to present the design, implementation, and performance issues of AI applications and the suitability of the FPGA platform. This book covers the features of modern Field Programmable Gate Arrays (FPGA) devices, design techniques, and successful implementations pertaining to AI applications. It describes various hardware options available for AI applications, key advantages of FPGAs, and contemporary FPGA ICs with software support. The focus is on exploiting parallelism offered by FPGA to meet heavy computation requirements of AI as complete hardware implementation or customized hardware accelerators. This is a comprehensive textbook on the subject covering a broad array of topics like technological platforms for the implementation of AI, capabilities of FPGA, suppliers’ software tools and hardware boards, and discussion of implementations done by researchers to encourage the AI community to use and experiment with FPGA. Readers will benefit from reading this book because It serves all levels of students and researcher’s as it deals with the basics and minute details of Ecosystem Development Requirements for Intelligent applications with reconfigurable architectures whereas current competitors’ books are more suitable for understanding only reconfigurable architectures. It focuses on all aspects of machine learning accelerators for the design and development of intelligent applications and not on a single perspective such as only on reconfigurable architectures for IoT applications. It is the best solution for researchers to understand how to design and develop various AI, deep learning, and machine learning applications on the FPGA platform. It is the best solution for all types of learners to get complete knowledge of why reconfigurable architectures are important for implementing AI-ML applications with heavy computations. Audience Researchers, industrial experts, scientists, and postgraduate students who are working in the fields of computer engineering, electronics, and electrical engineering, especially those specializing in VLSI and embedded systems, FPGA, artificial intelligence, Internet of Things, and related multidisciplinary projects.

Neuromorphic Devices for Brain-inspired Computing

Neuromorphic Devices for Brain-inspired Computing
Author: Qing Wan
Publisher: John Wiley & Sons
Total Pages: 258
Release: 2022-05-16
Genre: Technology & Engineering
ISBN: 3527349790

Explore the cutting-edge of neuromorphic technologies with applications in Artificial Intelligence In Neuromorphic Devices for Brain-Inspired Computing: Artificial Intelligence, Perception, and Robotics, a team of expert engineers delivers a comprehensive discussion of all aspects of neuromorphic electronics designed to assist researchers and professionals to understand and apply all manner of brain-inspired computing and perception technologies. The book covers both memristic and neuromorphic devices, including spintronic, multi-terminal, and neuromorphic perceptual applications. Summarizing recent progress made in five distinct configurations of brain-inspired computing, the authors explore this promising technology’s potential applications in two specific areas: neuromorphic computing systems and neuromorphic perceptual systems. The book also includes: A thorough introduction to two-terminal neuromorphic memristors, including memristive devices and resistive switching mechanisms Comprehensive explorations of spintronic neuromorphic devices and multi-terminal neuromorphic devices with cognitive behaviors Practical discussions of neuromorphic devices based on chalcogenide and organic materials In-depth examinations of neuromorphic computing and perceptual systems with emerging devices Perfect for materials scientists, biochemists, and electronics engineers, Neuromorphic Devices for Brain-Inspired Computing: Artificial Intelligence, Perception, and Robotics will also earn a place in the libraries of neurochemists, neurobiologists, and neurophysiologists.

Memristors for Neuromorphic Circuits and Artificial Intelligence Applications

Memristors for Neuromorphic Circuits and Artificial Intelligence Applications
Author: Jordi Suñé
Publisher: MDPI
Total Pages: 244
Release: 2020-04-09
Genre: Technology & Engineering
ISBN: 3039285769

Artificial Intelligence (AI) has found many applications in the past decade due to the ever increasing computing power. Artificial Neural Networks are inspired in the brain structure and consist in the interconnection of artificial neurons through artificial synapses. Training these systems requires huge amounts of data and, after the network is trained, it can recognize unforeseen data and provide useful information. The so-called Spiking Neural Networks behave similarly to how the brain functions and are very energy efficient. Up to this moment, both spiking and conventional neural networks have been implemented in software programs running on conventional computing units. However, this approach requires high computing power, a large physical space and is energy inefficient. Thus, there is an increasing interest in developing AI tools directly implemented in hardware. The first hardware demonstrations have been based on CMOS circuits for neurons and specific communication protocols for synapses. However, to further increase training speed and energy efficiency while decreasing system size, the combination of CMOS neurons with memristor synapses is being explored. The memristor is a resistor with memory which behaves similarly to biological synapses. This book explores the state-of-the-art of neuromorphic circuits implementing neural networks with memristors for AI applications.

A Thousand Brains

A Thousand Brains
Author: Jeff Hawkins
Publisher: Basic Books
Total Pages: 251
Release: 2021-03-02
Genre: Computers
ISBN: 1541675800

A bestselling author, neuroscientist, and computer engineer unveils a theory of intelligence that will revolutionize our understanding of the brain and the future of AI. For all of neuroscience's advances, we've made little progress on its biggest question: How do simple cells in the brain create intelligence? Jeff Hawkins and his team discovered that the brain uses maplike structures to build a model of the world—not just one model, but hundreds of thousands of models of everything we know. This discovery allows Hawkins to answer important questions about how we perceive the world, why we have a sense of self, and the origin of high-level thought. A Thousand Brains heralds a revolution in the understanding of intelligence. It is a big-think book, in every sense of the word. One of the Financial Times' Best Books of 2021 One of Bill Gates' Five Favorite Books of 2021

Neural Engineering

Neural Engineering
Author: Chris Eliasmith
Publisher: MIT Press
Total Pages: 384
Release: 2003
Genre: Computers
ISBN: 9780262550604

A synthesis of current approaches to adapting engineering tools to the study of neurobiological systems.

Principles of Neural Design

Principles of Neural Design
Author: Peter Sterling
Publisher: MIT Press
Total Pages: 567
Release: 2015-05-22
Genre: Education
ISBN: 0262028700

Neuroscience research has exploded, with more than fifty thousand neuroscientists applying increasingly advanced methods. A mountain of new facts and mechanisms has emerged. And yet a principled framework to organize this knowledge has been missing. In this book, Peter Sterling and Simon Laughlin, two leading neuroscientists, strive to fill this gap, outlining a set of organizing principles to explain the whys of neural design that allow the brain to compute so efficiently. Setting out to "reverse engineer" the brain -- disassembling it to understand it -- Sterling and Laughlin first consider why an animal should need a brain, tracing computational abilities from bacterium to protozoan to worm. They examine bigger brains and the advantages of "anticipatory regulation"; identify constraints on neural design and the need to "nanofy"; and demonstrate the routes to efficiency in an integrated molecular system, phototransduction. They show that the principles of neural design at finer scales and lower levels apply at larger scales and higher levels; describe neural wiring efficiency; and discuss learning as a principle of biological design that includes "save only what is needed." Sterling and Laughlin avoid speculation about how the brain might work and endeavor to make sense of what is already known. Their distinctive contribution is to gather a coherent set of basic rules and exemplify them across spatial and functional scales.

Efficient Learning Machines

Efficient Learning Machines
Author: Mariette Awad
Publisher: Apress
Total Pages: 263
Release: 2015-04-27
Genre: Computers
ISBN: 1430259906

Machine learning techniques provide cost-effective alternatives to traditional methods for extracting underlying relationships between information and data and for predicting future events by processing existing information to train models. Efficient Learning Machines explores the major topics of machine learning, including knowledge discovery, classifications, genetic algorithms, neural networking, kernel methods, and biologically-inspired techniques. Mariette Awad and Rahul Khanna’s synthetic approach weaves together the theoretical exposition, design principles, and practical applications of efficient machine learning. Their experiential emphasis, expressed in their close analysis of sample algorithms throughout the book, aims to equip engineers, students of engineering, and system designers to design and create new and more efficient machine learning systems. Readers of Efficient Learning Machines will learn how to recognize and analyze the problems that machine learning technology can solve for them, how to implement and deploy standard solutions to sample problems, and how to design new systems and solutions. Advances in computing performance, storage, memory, unstructured information retrieval, and cloud computing have coevolved with a new generation of machine learning paradigms and big data analytics, which the authors present in the conceptual context of their traditional precursors. Awad and Khanna explore current developments in the deep learning techniques of deep neural networks, hierarchical temporal memory, and cortical algorithms. Nature suggests sophisticated learning techniques that deploy simple rules to generate highly intelligent and organized behaviors with adaptive, evolutionary, and distributed properties. The authors examine the most popular biologically-inspired algorithms, together with a sample application to distributed datacenter management. They also discuss machine learning techniques for addressing problems of multi-objective optimization in which solutions in real-world systems are constrained and evaluated based on how well they perform with respect to multiple objectives in aggregate. Two chapters on support vector machines and their extensions focus on recent improvements to the classification and regression techniques at the core of machine learning.

Discovering the Brain

Discovering the Brain
Author: National Academy of Sciences
Publisher: National Academies Press
Total Pages: 195
Release: 1992-01-01
Genre: Medical
ISBN: 0309045290

The brain ... There is no other part of the human anatomy that is so intriguing. How does it develop and function and why does it sometimes, tragically, degenerate? The answers are complex. In Discovering the Brain, science writer Sandra Ackerman cuts through the complexity to bring this vital topic to the public. The 1990s were declared the "Decade of the Brain" by former President Bush, and the neuroscience community responded with a host of new investigations and conferences. Discovering the Brain is based on the Institute of Medicine conference, Decade of the Brain: Frontiers in Neuroscience and Brain Research. Discovering the Brain is a "field guide" to the brainâ€"an easy-to-read discussion of the brain's physical structure and where functions such as language and music appreciation lie. Ackerman examines: How electrical and chemical signals are conveyed in the brain. The mechanisms by which we see, hear, think, and pay attentionâ€"and how a "gut feeling" actually originates in the brain. Learning and memory retention, including parallels to computer memory and what they might tell us about our own mental capacity. Development of the brain throughout the life span, with a look at the aging brain. Ackerman provides an enlightening chapter on the connection between the brain's physical condition and various mental disorders and notes what progress can realistically be made toward the prevention and treatment of stroke and other ailments. Finally, she explores the potential for major advances during the "Decade of the Brain," with a look at medical imaging techniquesâ€"what various technologies can and cannot tell usâ€"and how the public and private sectors can contribute to continued advances in neuroscience. This highly readable volume will provide the public and policymakersâ€"and many scientists as wellâ€"with a helpful guide to understanding the many discoveries that are sure to be announced throughout the "Decade of the Brain."

Neuromorphic Computing

Neuromorphic Computing
Author:
Publisher: BoD – Books on Demand
Total Pages: 298
Release: 2023-11-15
Genre: Computers
ISBN: 1803561432

Dive into the cutting-edge world of Neuromorphic Computing, a groundbreaking volume that unravels the secrets of brain-inspired computational paradigms. Spanning neuroscience, artificial intelligence, and hardware design, this book presents a comprehensive exploration of neuromorphic systems, empowering both experts and newcomers to embrace the limitless potential of brain-inspired computing. Discover the fundamental principles that underpin neural computation as we journey through the origins of neuromorphic architectures, meticulously crafted to mimic the brain’s intricate neural networks. Unlock the true essence of learning mechanisms – unsupervised, supervised, and reinforcement learning – and witness how these innovations are shaping the future of artificial intelligence.