Elliptic Problems in Nonsmooth Domains
Author | : Pierre Grisvard |
Publisher | : SIAM |
Total Pages | : 426 |
Release | : 2011-10-20 |
Genre | : Mathematics |
ISBN | : 1611972027 |
Originally published: Boston: Pitman Advanced Pub. Program, 1985.
Download Elliptic Boundary Value Problems On Non Smooth Domains full books in PDF, epub, and Kindle. Read online free Elliptic Boundary Value Problems On Non Smooth Domains ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Pierre Grisvard |
Publisher | : SIAM |
Total Pages | : 426 |
Release | : 2011-10-20 |
Genre | : Mathematics |
ISBN | : 1611972027 |
Originally published: Boston: Pitman Advanced Pub. Program, 1985.
Author | : Monique Dauge |
Publisher | : Springer |
Total Pages | : 266 |
Release | : 2006-11-14 |
Genre | : Mathematics |
ISBN | : 3540459421 |
This research monograph focusses on a large class of variational elliptic problems with mixed boundary conditions on domains with various corner singularities, edges, polyhedral vertices, cracks, slits. In a natural functional framework (ordinary Sobolev Hilbert spaces) Fredholm and semi-Fredholm properties of induced operators are completely characterized. By specially choosing the classes of operators and domains and the functional spaces used, precise and general results may be obtained on the smoothness and asymptotics of solutions. A new type of characteristic condition is introduced which involves the spectrum of associated operator pencils and some ideals of polynomials satisfying some boundary conditions on cones. The methods involve many perturbation arguments and a new use of Mellin transform. Basic knowledge about BVP on smooth domains in Sobolev spaces is the main prerequisite to the understanding of this book. Readers interested in the general theory of corner domains will find here a new basic theory (new approaches and results) as well as a synthesis of many already known results; those who need regularity conditions and descriptions of singularities for numerical analysis will find precise statements and also a means to obtain further one in many explicit situtations.
Author | : Vladimir Kozlov |
Publisher | : American Mathematical Soc. |
Total Pages | : 426 |
Release | : 1997 |
Genre | : Mathematics |
ISBN | : 0821807544 |
For graduate students and research mathematicians interested in partial differential equations and who have a basic knowledge of functional analysis. Restricted to boundary value problems formed by differential operators, avoiding the use of pseudo- differential operators. Concentrates on fundamental results such as estimates for solutions in different function spaces, the Fredholm property of the problem's operator, regularity assertions, and asymptotic formulas for the solutions of near singular points. Considers the solutions in Sobolev spaces of both positive and negative orders. Annotation copyrighted by Book News, Inc., Portland, OR
Author | : Mikhail S. Agranovich |
Publisher | : Springer |
Total Pages | : 343 |
Release | : 2015-05-06 |
Genre | : Mathematics |
ISBN | : 3319146483 |
This book, which is based on several courses of lectures given by the author at the Independent University of Moscow, is devoted to Sobolev-type spaces and boundary value problems for linear elliptic partial differential equations. Its main focus is on problems in non-smooth (Lipschitz) domains for strongly elliptic systems. The author, who is a prominent expert in the theory of linear partial differential equations, spectral theory and pseudodifferential operators, has included his own very recent findings in the present book. The book is well suited as a modern graduate textbook, utilizing a thorough and clear format that strikes a good balance between the choice of material and the style of exposition. It can be used both as an introduction to recent advances in elliptic equations and boundary value problems and as a valuable survey and reference work. It also includes a good deal of new and extremely useful material not available in standard textbooks to date. Graduate and post-graduate students, as well as specialists working in the fields of partial differential equations, functional analysis, operator theory and mathematical physics will find this book particularly valuable.
Author | : Sergey Nazarov |
Publisher | : Walter de Gruyter |
Total Pages | : 537 |
Release | : 2011-06-01 |
Genre | : Mathematics |
ISBN | : 3110848910 |
The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany
Author | : Vladimir B. Vasil'ev |
Publisher | : Springer Science & Business Media |
Total Pages | : 192 |
Release | : 2000-09-30 |
Genre | : Mathematics |
ISBN | : 9780792365310 |
This monograph is devoted to the development of a new approach to studying elliptic differential and integro-differential (pseudodifferential) equations and their boundary problems in non-smooth domains. This approach is based on a special representation of symbols of elliptic operators called wave factorization. In canonical domains, for example, the angle on a plane or a wedge in space, this yields a general solution, and then leads to the statement of a boundary problem. Wave factorization has also been used to obtain explicit formulas for solving some problems in diffraction and elasticity theory. Audience: This volume will be of interest to mathematicians, engineers, and physicists whose work involves partial differential equations, integral equations, operator theory, elasticity and viscoelasticity, and electromagnetic theory. It can also be recommended as a text for graduate and postgraduate students for courses in singular integral and pseudodifferential equations.
Author | : Filippo Gazzola |
Publisher | : Springer |
Total Pages | : 444 |
Release | : 2010-05-26 |
Genre | : Mathematics |
ISBN | : 3642122450 |
This accessible monograph covers higher order linear and nonlinear elliptic boundary value problems in bounded domains, mainly with the biharmonic or poly-harmonic operator as leading principal part. It provides rapid access to recent results and references.
Author | : Dagmar Medková |
Publisher | : Springer |
Total Pages | : 669 |
Release | : 2018-03-31 |
Genre | : Mathematics |
ISBN | : 3319743074 |
This book is devoted to boundary value problems of the Laplace equation on bounded and unbounded Lipschitz domains. It studies the Dirichlet problem, the Neumann problem, the Robin problem, the derivative oblique problem, the transmission problem, the skip problem and mixed problems. It also examines different solutions - classical, in Sobolev spaces, in Besov spaces, in homogeneous Sobolev spaces and in the sense of non-tangential limit. It also explains relations between different solutions. The book has been written in a way that makes it as readable as possible for a wide mathematical audience, and includes all the fundamental definitions and propositions from other fields of mathematics. This book is of interest to research students, as well as experts in partial differential equations and numerical analysis.
Author | : M.S. Agranovich |
Publisher | : Springer Science & Business Media |
Total Pages | : 287 |
Release | : 2013-11-11 |
Genre | : Mathematics |
ISBN | : 3662067218 |
This EMS volume gives an overview of the modern theory of elliptic boundary value problems, with contributions focusing on differential elliptic boundary problems and their spectral properties, elliptic pseudodifferential operators, and general differential elliptic boundary value problems in domains with singularities.
Author | : William Charles Hector McLean |
Publisher | : Cambridge University Press |
Total Pages | : 376 |
Release | : 2000-01-28 |
Genre | : Mathematics |
ISBN | : 9780521663755 |
This 2000 book provided the first detailed exposition of the mathematical theory of boundary integral equations of the first kind on non-smooth domains.