Elements of the Theory of Elliptic Functions

Elements of the Theory of Elliptic Functions
Author: Naum Ilʹich Akhiezer
Publisher: American Mathematical Soc.
Total Pages: 237
Release: 1990
Genre: Mathematics
ISBN: 9780821809006

Presents the theory of elliptic functions and its applications. Suitable primarily for engineers who work with elliptic functions, this work is also intended for those with background in the elements of mathematical analysis and the theory of functions contained in the first two years of mathematics and physics courses at the college level.

Elementary Theory of Analytic Functions of One or Several Complex Variables

Elementary Theory of Analytic Functions of One or Several Complex Variables
Author: Henri Cartan
Publisher: Courier Corporation
Total Pages: 242
Release: 2013-04-22
Genre: Mathematics
ISBN: 0486318672

Basic treatment includes existence theorem for solutions of differential systems where data is analytic, holomorphic functions, Cauchy's integral, Taylor and Laurent expansions, more. Exercises. 1973 edition.

Elements of Set Theory

Elements of Set Theory
Author: Herbert B. Enderton
Publisher: Academic Press
Total Pages: 294
Release: 1977-05-23
Genre: Mathematics
ISBN: 0080570429

This is an introductory undergraduate textbook in set theory. In mathematics these days, essentially everything is a set. Some knowledge of set theory is necessary part of the background everyone needs for further study of mathematics. It is also possible to study set theory for its own interest--it is a subject with intruiging results anout simple objects. This book starts with material that nobody can do without. There is no end to what can be learned of set theory, but here is a beginning.

Functions of a Real Variable

Functions of a Real Variable
Author: N. Bourbaki
Publisher: Springer Science & Business Media
Total Pages: 343
Release: 2013-12-01
Genre: Mathematics
ISBN: 3642593151

This is an English translation of Bourbaki’s Fonctions d'une Variable Réelle. Coverage includes: functions allowed to take values in topological vector spaces, asymptotic expansions are treated on a filtered set equipped with a comparison scale, theorems on the dependence on parameters of differential equations are directly applicable to the study of flows of vector fields on differential manifolds, etc.

The Functions of Mathematical Physics

The Functions of Mathematical Physics
Author: Harry Hochstadt
Publisher: Courier Corporation
Total Pages: 354
Release: 2012-04-30
Genre: Science
ISBN: 0486168786

A modern classic, this clearly written, incisive textbook provides a comprehensive, detailed survey of the functions of mathematical physics, a field of study straddling the somewhat artificial boundary between pure and applied mathematics. In the 18th and 19th centuries, the theorists who devoted themselves to this field — pioneers such as Gauss, Euler, Fourier, Legendre, and Bessel — were searching for mathematical solutions to physical problems. Today, although most of the functions have practical applications, in areas ranging from the quantum-theoretical model of the atom to the vibrating membrane, some, such as those related to the theory of discontinuous groups, still remain of purely mathematical interest. Chapters One and Two examine orthogonal polynomials, with sections on such topics as the recurrence formula, the Christoffel-Darboux formula, the Weierstrass approximation theorem, and the application of Hermite polynomials to quantum mechanics. Chapter Three is devoted to the principal properties of the gamma function, including asymptotic expansions and Mellin-Barnes integrals. Chapter Four covers hypergeometric functions, including a review of linear differential equations with regular singular points, and a general method for finding integral representations. Chapters Five and Six are concerned with the Legendre functions and their use in the solutions of Laplace's equation in spherical coordinates, as well as problems in an n-dimension setting. Chapter Seven deals with confluent hypergeometric functions, and Chapter Eight examines, at length, the most important of these — the Bessel functions. Chapter Nine covers Hill's equations, including the expansion theorems.

Elements of Operator Theory

Elements of Operator Theory
Author: Carlos S. Kubrusly
Publisher: Springer Science & Business Media
Total Pages: 535
Release: 2013-03-14
Genre: Mathematics
ISBN: 1475733283

{\it Elements of Operatory Theory} is aimed at graduate students as well as a new generation of mathematicians and scientists who need to apply operator theory to their field. Written in a user-friendly, motivating style, fundamental topics are presented in a systematic fashion, i.e., set theory, algebraic structures, topological structures, Banach spaces, Hilbert spaces, culminating with the Spectral Theorem, one of the landmarks in the theory of operators on Hilbert spaces. The exposition is concept-driven and as much as possible avoids the formula-computational approach. Key features of this largely self-contained work include: * required background material to each chapter * fully rigorous proofs, over 300 of them, are specially tailored to the presentation and some are new * more than 100 examples and, in several cases, interesting counterexamples that demonstrate the frontiers of an important theorem * over 300 problems, many with hints * both problems and examples underscore further auxiliary results and extensions of the main theory; in this non-traditional framework, the reader is challenged and has a chance to prove the principal theorems anew This work is an excellent text for the classroom as well as a self-study resource for researchers. Prerequisites include an introduction to analysis and to functions of a complex variable, which most first-year graduate students in mathematics, engineering, or another formal science have already acquired. Measure theory and integration theory are required only for the last section of the final chapter.

Elements of the Representation Theory of the Jacobi Group

Elements of the Representation Theory of the Jacobi Group
Author: Rolf Berndt
Publisher: Springer Science & Business Media
Total Pages: 225
Release: 2012-01-05
Genre: Mathematics
ISBN: 303480282X

Combining algebraic groups and number theory, this volume gathers material from the representation theory of this group for the first time, doing so for both local (Archimedean and non-Archimedean) cases as well as for the global number field case.

Theory of Functions, Parts I and II

Theory of Functions, Parts I and II
Author: Konrad Knopp
Publisher: Courier Corporation
Total Pages: 340
Release: 2013-07-24
Genre: Mathematics
ISBN: 0486318702

Handy one-volume edition. Part I considers general foundations of theory of functions; Part II stresses special and characteristic functions. Proofs given in detail. Introduction. Bibliographies.

The Mathematical Theory of Finite Element Methods

The Mathematical Theory of Finite Element Methods
Author: Susanne Brenner
Publisher: Springer Science & Business Media
Total Pages: 369
Release: 2013-03-14
Genre: Mathematics
ISBN: 1475736584

A rigorous and thorough mathematical introduction to the subject; A clear and concise treatment of modern fast solution techniques such as multigrid and domain decomposition algorithms; Second edition contains two new chapters, as well as many new exercises; Previous edition sold over 3000 copies worldwide

Elements of Hilbert Spaces and Operator Theory

Elements of Hilbert Spaces and Operator Theory
Author: Harkrishan Lal Vasudeva
Publisher: Springer
Total Pages: 528
Release: 2017-03-27
Genre: Mathematics
ISBN: 9811030200

The book presents an introduction to the geometry of Hilbert spaces and operator theory, targeting graduate and senior undergraduate students of mathematics. Major topics discussed in the book are inner product spaces, linear operators, spectral theory and special classes of operators, and Banach spaces. On vector spaces, the structure of inner product is imposed. After discussing geometry of Hilbert spaces, its applications to diverse branches of mathematics have been studied. Along the way are introduced orthogonal polynomials and their use in Fourier series and approximations. Spectrum of an operator is the key to the understanding of the operator. Properties of the spectrum of different classes of operators, such as normal operators, self-adjoint operators, unitaries, isometries and compact operators have been discussed. A large number of examples of operators, along with their spectrum and its splitting into point spectrum, continuous spectrum, residual spectrum, approximate point spectrum and compression spectrum, have been worked out. Spectral theorems for self-adjoint operators, and normal operators, follow the spectral theorem for compact normal operators. The book also discusses invariant subspaces with special attention to the Volterra operator and unbounded operators. In order to make the text as accessible as possible, motivation for the topics is introduced and a greater amount of explanation than is usually found in standard texts on the subject is provided. The abstract theory in the book is supplemented with concrete examples. It is expected that these features will help the reader get a good grasp of the topics discussed. Hints and solutions to all the problems are collected at the end of the book. Additional features are introduced in the book when it becomes imperative. This spirit is kept alive throughout the book.