Effective Results and Methods for Diophantine Equations over Finitely Generated Domains

Effective Results and Methods for Diophantine Equations over Finitely Generated Domains
Author: Jan-Hendrik Evertse
Publisher: Cambridge University Press
Total Pages: 242
Release: 2022-04-28
Genre: Mathematics
ISBN: 1009050036

This book provides the first thorough treatment of effective results and methods for Diophantine equations over finitely generated domains. Compiling diverse results and techniques from papers written in recent decades, the text includes an in-depth analysis of classical equations including unit equations, Thue equations, hyper- and superelliptic equations, the Catalan equation, discriminant equations and decomposable form equations. The majority of results are proved in a quantitative form, giving effective bounds on the sizes of the solutions. The necessary techniques from Diophantine approximation and commutative algebra are all explained in detail without requiring any specialized knowledge on the topic, enabling readers from beginning graduate students to experts to prove effective finiteness results for various further classes of Diophantine equations.

Unit Equations in Diophantine Number Theory

Unit Equations in Diophantine Number Theory
Author: Jan-Hendrik Evertse
Publisher: Cambridge University Press
Total Pages: 381
Release: 2015-12-30
Genre: Mathematics
ISBN: 1316432351

Diophantine number theory is an active area that has seen tremendous growth over the past century, and in this theory unit equations play a central role. This comprehensive treatment is the first volume devoted to these equations. The authors gather together all the most important results and look at many different aspects, including effective results on unit equations over number fields, estimates on the number of solutions, analogues for function fields and effective results for unit equations over finitely generated domains. They also present a variety of applications. Introductory chapters provide the necessary background in algebraic number theory and function field theory, as well as an account of the required tools from Diophantine approximation and transcendence theory. This makes the book suitable for young researchers as well as experts who are looking for an up-to-date overview of the field.

Number Theory – Diophantine Problems, Uniform Distribution and Applications

Number Theory – Diophantine Problems, Uniform Distribution and Applications
Author: Christian Elsholtz
Publisher: Springer
Total Pages: 447
Release: 2017-05-26
Genre: Mathematics
ISBN: 3319553577

This volume is dedicated to Robert F. Tichy on the occasion of his 60th birthday. Presenting 22 research and survey papers written by leading experts in their respective fields, it focuses on areas that align with Tichy’s research interests and which he significantly shaped, including Diophantine problems, asymptotic counting, uniform distribution and discrepancy of sequences (in theory and application), dynamical systems, prime numbers, and actuarial mathematics. Offering valuable insights into recent developments in these areas, the book will be of interest to researchers and graduate students engaged in number theory and its applications.

Discriminant Equations in Diophantine Number Theory

Discriminant Equations in Diophantine Number Theory
Author: Jan-Hendrik Evertse
Publisher: Cambridge University Press
Total Pages: 477
Release: 2017
Genre: Mathematics
ISBN: 1107097614

The first comprehensive and up-to-date account of discriminant equations and their applications. For graduate students and researchers.

The Calabi Problem for Fano Threefolds

The Calabi Problem for Fano Threefolds
Author: Carolina Araujo
Publisher: Cambridge University Press
Total Pages: 451
Release: 2023-06-30
Genre: Mathematics
ISBN: 1009193392

This book determines whether the general element of each family of Fano threefolds is K-polystable, a major problem in mathematics.

Recent Developments in Algebraic Geometry

Recent Developments in Algebraic Geometry
Author: Hamid Abban
Publisher: Cambridge University Press
Total Pages: 368
Release: 2022-09-30
Genre: Mathematics
ISBN: 1009190822

Written in celebration of Miles Reid's 70th birthday, this illuminating volume contains 11 papers by leading mathematicians in and around algebraic geometry, broadly related to the themes and interests of Reid's varied career. Just as in Reid's own scientific output, some of the papers give comprehensive accounts of the state of the art of foundational matters, while others give expositions of subject areas or techniques in concrete terms. Reid has been one of the major expositors of algebraic geometry and a great influence on many in this field – this book hopes to inspire a new generation of graduate students and researchers in his tradition.

Reviews in Number Theory, 1984-96

Reviews in Number Theory, 1984-96
Author:
Publisher: American Mathematical Society(RI)
Total Pages: 1084
Release: 1997
Genre: Number theory
ISBN:

These six volumes include approximately 20,000 reviews of items in number theory that appeared in Mathematical Reviews (MR) between 1984 and 1996. This is the third such set of volumes in number theory: the first was edited by W.J. LeVeque and included reviews from 1940-1972; the second was edited by R.K. Guy and appeared in 1984.

Bounded Cohomology and Simplicial Volume

Bounded Cohomology and Simplicial Volume
Author: Caterina Campagnolo
Publisher: Cambridge University Press
Total Pages: 172
Release: 2022-11-17
Genre: Mathematics
ISBN: 100919271X

Since their introduction by Gromov in the 1980s, the study of bounded cohomology and simplicial volume has developed into an active field connected to geometry and group theory. This monograph, arising from a learning seminar for young researchers working in the area, provides a collection of different perspectives on the subject, both classical and recent. The book's introduction presents the main definitions of the theories of bounded cohomology and simplicial volume, outlines their history, and explains their principal motivations and applications. Individual chapters then present different aspects of the theory, with a focus on examples. Detailed references to foundational papers and the latest research are given for readers wishing to dig deeper. The prerequisites are only basic knowledge of classical algebraic topology and of group theory, and the presentations are gentle and informal in order to be accessible to beginning graduate students wanting to enter this lively and topical field.

Elliptic Regularity Theory by Approximation Methods

Elliptic Regularity Theory by Approximation Methods
Author: Edgard A. Pimentel
Publisher: Cambridge University Press
Total Pages: 204
Release: 2022-06-30
Genre: Mathematics
ISBN: 1009103121

Presenting the basics of elliptic PDEs in connection with regularity theory, the book bridges fundamental breakthroughs – such as the Krylov–Safonov and Evans–Krylov results, Caffarelli's regularity theory, and the counterexamples due to Nadirashvili and Vlăduţ – and modern developments, including improved regularity for flat solutions and the partial regularity result. After presenting this general panorama, accounting for the subtleties surrounding C-viscosity and Lp-viscosity solutions, the book examines important models through approximation methods. The analysis continues with the asymptotic approach, based on the recession operator. After that, approximation techniques produce a regularity theory for the Isaacs equation, in Sobolev and Hölder spaces. Although the Isaacs operator lacks convexity, approximation methods are capable of producing Hölder continuity for the Hessian of the solutions by connecting the problem with a Bellman equation. To complete the book, degenerate models are studied and their optimal regularity is described.

Maurer–Cartan Methods in Deformation Theory

Maurer–Cartan Methods in Deformation Theory
Author: Vladimir Dotsenko
Publisher: Cambridge University Press
Total Pages: 187
Release: 2023-08-31
Genre: Mathematics
ISBN: 1108965644

Covering an exceptional range of topics, this text provides a unique overview of the Maurer-Cartan methods in algebra, geometry, topology, and mathematical physics. It offers a new conceptual treatment of the twisting procedure, guiding the reader through various versions with the help of plentiful motivating examples for graduate students as well as researchers. Topics covered include a novel approach to the twisting procedure for operads leading to Kontsevich graph homology and a description of the twisting procedure for (homotopy) associative algebras or (homotopy) Lie algebras using the biggest deformation gauge group ever considered. The book concludes with concise surveys of recent applications in areas including higher category theory and deformation theory.