Effective Methods in Algebraic Geometry

Effective Methods in Algebraic Geometry
Author: T. Mora
Publisher: Springer Science & Business Media
Total Pages: 504
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461204410

The symposium "MEGA-90 - Effective Methods in Algebraic Geome try" was held in Castiglioncello (Livorno, Italy) in April 17-211990. The themes - we quote from the "Call for papers" - were the fol lowing: - Effective methods and complexity issues in commutative algebra, pro jective geometry, real geometry, algebraic number theory - Algebraic geometric methods in algebraic computing Contributions in related fields (computational aspects of group theory, differential algebra and geometry, algebraic and differential topology, etc.) were also welcome. The origin and the motivation of such a meeting, that is supposed to be the first of a series, deserves to be explained. The subject - the theory and the practice of computation in alge braic geometry and related domains from the mathematical viewpoin- has been one of the themes of the symposia organized by SIGSAM (the Special Interest Group for Symbolic and Algebraic Manipulation of the Association for Computing Machinery), SAME (Symbolic and Algebraic Manipulation in Europe), and AAECC (the semantics of the name is vary ing; an average meaning is "Applied Algebra and Error Correcting Codes").

Effective Methods in Algebraic Geometry

Effective Methods in Algebraic Geometry
Author: Teo Mora
Publisher: Springer Science & Business Media
Total Pages: 524
Release: 1991
Genre: Mathematics
ISBN: 9780817635466

The symposium "MEGA-90 - Effective Methods in Algebraic Geome try" was held in Castiglioncello (Livorno, Italy) in April 17-211990. The themes - we quote from the "Call for papers" - were the fol lowing: - Effective methods and complexity issues in commutative algebra, pro jective geometry, real geometry, algebraic number theory - Algebraic geometric methods in algebraic computing Contributions in related fields (computational aspects of group theory, differential algebra and geometry, algebraic and differential topology, etc.) were also welcome. The origin and the motivation of such a meeting, that is supposed to be the first of a series, deserves to be explained. The subject - the theory and the practice of computation in alge braic geometry and related domains from the mathematical viewpoin- has been one of the themes of the symposia organized by SIGSAM (the Special Interest Group for Symbolic and Algebraic Manipulation of the Association for Computing Machinery), SAME (Symbolic and Algebraic Manipulation in Europe), and AAECC (the semantics of the name is vary ing; an average meaning is "Applied Algebra and Error Correcting Codes").

A Primer of Algebraic Geometry

A Primer of Algebraic Geometry
Author: Huishi Li
Publisher: CRC Press
Total Pages: 393
Release: 2017-12-19
Genre: Mathematics
ISBN: 1482270331

"Presents the structure of algebras appearing in representation theory of groups and algebras with general ring theoretic methods related to representation theory. Covers affine algebraic sets and the nullstellensatz, polynomial and rational functions, projective algebraic sets. Groebner basis, dimension of algebraic sets, local theory, curves and elliptic curves, and more."

Using Algebraic Geometry

Using Algebraic Geometry
Author: David A. Cox
Publisher: Springer Science & Business Media
Total Pages: 513
Release: 2013-04-17
Genre: Mathematics
ISBN: 1475769113

An illustration of the many uses of algebraic geometry, highlighting the more recent applications of Groebner bases and resultants. Along the way, the authors provide an introduction to some algebraic objects and techniques more advanced than typically encountered in a first course. The book is accessible to non-specialists and to readers with a diverse range of backgrounds, assuming readers know the material covered in standard undergraduate courses, including abstract algebra. But because the text is intended for beginning graduate students, it does not require graduate algebra, and in particular, does not assume that the reader is familiar with modules.

Classical Algebraic Geometry

Classical Algebraic Geometry
Author: Igor V. Dolgachev
Publisher: Cambridge University Press
Total Pages: 653
Release: 2012-08-16
Genre: Mathematics
ISBN: 1139560786

Algebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book.

Algebraic Geometry

Algebraic Geometry
Author: Robin Hartshorne
Publisher: Springer Science & Business Media
Total Pages: 511
Release: 2013-06-29
Genre: Mathematics
ISBN: 1475738498

An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.

Algebraic and Geometric Ideas in the Theory of Discrete Optimization

Algebraic and Geometric Ideas in the Theory of Discrete Optimization
Author: Jesus A. De Loera
Publisher: SIAM
Total Pages: 320
Release: 2013-01-31
Genre: Mathematics
ISBN: 1611972434

In recent years, many new techniques have emerged in the mathematical theory of discrete optimization that have proven to be effective in solving a number of hard problems. This book presents these recent advances, particularly those that arise from algebraic geometry, commutative algebra, convex and discrete geometry, generating functions, and other tools normally considered outside of the standard curriculum in optimization. These new techniques, all of which are presented with minimal prerequisites, provide a transition from linear to nonlinear discrete optimization. This book can be used as a textbook for advanced undergraduates or first-year graduate students in mathematics, computer science or operations research. It is also appropriate for mathematicians, engineers, and scientists engaged in computation who wish to gain a deeper understanding of how and why algorithms work.

Algebra, Geometry and Their Interactions

Algebra, Geometry and Their Interactions
Author: Alberto Corso
Publisher: American Mathematical Soc.
Total Pages: 282
Release: 2007
Genre: Mathematics
ISBN: 0821840940

This volume's papers present work at the cutting edge of current research in algebraic geometry, commutative algebra, numerical analysis, and other related fields, with an emphasis on the breadth of these areas and the beneficial results obtained by the interactions between these fields. This collection of two survey articles and sixteen refereed research papers, written by experts in these fields, gives the reader a greater sense of some of the directions in which this research is moving, as well as a better idea of how these fields interact with each other and with other applied areas. The topics include blowup algebras, linkage theory, Hilbert functions, divisors, vector bundles, determinantal varieties, (square-free) monomial ideals, multiplicities and cohomological degrees, and computer vision.

Algebraic Geometry And Its Applications: Dedicated To Gilles Lachaud On His 60th Birthday - Proceedings Of The First Saga Conference

Algebraic Geometry And Its Applications: Dedicated To Gilles Lachaud On His 60th Birthday - Proceedings Of The First Saga Conference
Author: Robert Rolland
Publisher: World Scientific
Total Pages: 530
Release: 2008-04-17
Genre: Mathematics
ISBN: 9814471666

This volume covers many topics, including number theory, Boolean functions, combinatorial geometry, and algorithms over finite fields. It contains many new, theoretical and applicable results, as well as surveys that were presented by the top specialists in these areas. New results include an answer to one of Serre's questions, posted in a letter to Top; cryptographic applications of the discrete logarithm problem related to elliptic curves and hyperelliptic curves; construction of function field towers; construction of new classes of Boolean cryptographic functions; and algorithmic applications of algebraic geometry.