EEG SIGNAL PROCESSING: A Machine Learning Based Framework

EEG SIGNAL PROCESSING: A Machine Learning Based Framework
Author: R. John Martin
Publisher: Ashok Yakkaldevi
Total Pages: 139
Release: 2022-01-31
Genre: Art
ISBN: 1678180068

1.1 Motivation Analysis of non-stationary and non-linear nature of signal data is the prime talk in signal processing domain today. On employing biomedical equipments huge volume of physiological data is acquired for analysis and diagnostic purposes. Inferring certain decisions from these signals by manual observation is quite tedious due to artefacts and its time series nature. As large volume of data involved in biomedical signal processing, adopting suitable computational methods is important for analysis. Data Science provides space for processing these signals through machine learning approaches. Many more biomedical signal processing implementations are in place using machine learning methods. This is the inspiration in adopting machine learning approach for analysing EEG signal data for epileptic seizure detection.

Machine Learning: Theory and Applications

Machine Learning: Theory and Applications
Author:
Publisher: Newnes
Total Pages: 551
Release: 2013-05-16
Genre: Computers
ISBN: 0444538666

Statistical learning and analysis techniques have become extremely important today, given the tremendous growth in the size of heterogeneous data collections and the ability to process it even from physically distant locations. Recent advances made in the field of machine learning provide a strong framework for robust learning from the diverse corpora and continue to impact a variety of research problems across multiple scientific disciplines. The aim of this handbook is to familiarize beginners as well as experts with some of the recent techniques in this field.The Handbook is divided in two sections: Theory and Applications, covering machine learning, data analytics, biometrics, document recognition and security. - Very relevant to current research challenges faced in various fields - Self-contained reference to machine learning - Emphasis on applications-oriented techniques

Deep Learning For Eeg-based Brain-computer Interfaces: Representations, Algorithms And Applications

Deep Learning For Eeg-based Brain-computer Interfaces: Representations, Algorithms And Applications
Author: Xiang Zhang
Publisher: World Scientific
Total Pages: 294
Release: 2021-09-14
Genre: Computers
ISBN: 1786349604

Deep Learning for EEG-Based Brain-Computer Interfaces is an exciting book that describes how emerging deep learning improves the future development of Brain-Computer Interfaces (BCI) in terms of representations, algorithms and applications. BCI bridges humanity's neural world and the physical world by decoding an individuals' brain signals into commands recognizable by computer devices.This book presents a highly comprehensive summary of commonly-used brain signals; a systematic introduction of around 12 subcategories of deep learning models; a mind-expanding summary of 200+ state-of-the-art studies adopting deep learning in BCI areas; an overview of a number of BCI applications and how deep learning contributes, along with 31 public BCI data sets. The authors also introduce a set of novel deep learning algorithms aimed at current BCI challenges such as robust representation learning, cross-scenario classification, and semi-supervised learning. Various real-world deep learning-based BCI applications are proposed and some prototypes are presented. The work contained within proposes effective and efficient models which will provide inspiration for people in academia and industry who work on BCI.Related Link(s)

Signal Processing and Machine Learning for Brain-Machine Interfaces

Signal Processing and Machine Learning for Brain-Machine Interfaces
Author: Toshihisa Tanaka
Publisher: Institution of Engineering and Technology
Total Pages: 355
Release: 2018-09-13
Genre: Technology & Engineering
ISBN: 1785613987

Brain-machine interfacing or brain-computer interfacing (BMI/BCI) is an emerging and challenging technology used in engineering and neuroscience. The ultimate goal is to provide a pathway from the brain to the external world via mapping, assisting, augmenting or repairing human cognitive or sensory-motor functions.

Machine Learning in Bio-Signal Analysis and Diagnostic Imaging

Machine Learning in Bio-Signal Analysis and Diagnostic Imaging
Author: Nilanjan Dey
Publisher: Academic Press
Total Pages: 348
Release: 2018-11-30
Genre: Science
ISBN: 012816087X

Machine Learning in Bio-Signal Analysis and Diagnostic Imaging presents original research on the advanced analysis and classification techniques of biomedical signals and images that cover both supervised and unsupervised machine learning models, standards, algorithms, and their applications, along with the difficulties and challenges faced by healthcare professionals in analyzing biomedical signals and diagnostic images. These intelligent recommender systems are designed based on machine learning, soft computing, computer vision, artificial intelligence and data mining techniques. Classification and clustering techniques, such as PCA, SVM, techniques, Naive Bayes, Neural Network, Decision trees, and Association Rule Mining are among the approaches presented. The design of high accuracy decision support systems assists and eases the job of healthcare practitioners and suits a variety of applications. Integrating Machine Learning (ML) technology with human visual psychometrics helps to meet the demands of radiologists in improving the efficiency and quality of diagnosis in dealing with unique and complex diseases in real time by reducing human errors and allowing fast and rigorous analysis. The book's target audience includes professors and students in biomedical engineering and medical schools, researchers and engineers. - Examines a variety of machine learning techniques applied to bio-signal analysis and diagnostic imaging - Discusses various methods of using intelligent systems based on machine learning, soft computing, computer vision, artificial intelligence and data mining - Covers the most recent research on machine learning in imaging analysis and includes applications to a number of domains

EEG Signal Processing and Feature Extraction

EEG Signal Processing and Feature Extraction
Author: Li Hu
Publisher: Springer Nature
Total Pages: 435
Release: 2019-10-12
Genre: Medical
ISBN: 9811391130

This book presents the conceptual and mathematical basis and the implementation of both electroencephalogram (EEG) and EEG signal processing in a comprehensive, simple, and easy-to-understand manner. EEG records the electrical activity generated by the firing of neurons within human brain at the scalp. They are widely used in clinical neuroscience, psychology, and neural engineering, and a series of EEG signal-processing techniques have been developed. Intended for cognitive neuroscientists, psychologists and other interested readers, the book discusses a range of current mainstream EEG signal-processing and feature-extraction techniques in depth, and includes chapters on the principles and implementation strategies.

EEG Signal Analysis and Classification

EEG Signal Analysis and Classification
Author: Siuly Siuly
Publisher: Springer
Total Pages: 257
Release: 2017-01-03
Genre: Technology & Engineering
ISBN: 331947653X

This book presents advanced methodologies in two areas related to electroencephalogram (EEG) signals: detection of epileptic seizures and identification of mental states in brain computer interface (BCI) systems. The proposed methods enable the extraction of this vital information from EEG signals in order to accurately detect abnormalities revealed by the EEG. New methods will relieve the time-consuming and error-prone practices that are currently in use. Common signal processing methodologies include wavelet transformation and Fourier transformation, but these methods are not capable of managing the size of EEG data. Addressing the issue, this book examines new EEG signal analysis approaches with a combination of statistical techniques (e.g. random sampling, optimum allocation) and machine learning methods. The developed methods provide better results than the existing methods. The book also offers applications of the developed methodologies that have been tested on several real-time benchmark databases. This book concludes with thoughts on the future of the field and anticipated research challenges. It gives new direction to the field of analysis and classification of EEG signals through these more efficient methodologies. Researchers and experts will benefit from its suggested improvements to the current computer-aided based diagnostic systems for the precise analysis and management of EEG signals. /div

Databases Theory and Applications

Databases Theory and Applications
Author: Wen Hua
Publisher: Springer Nature
Total Pages: 223
Release: 2022-08-26
Genre: Computers
ISBN: 3031155122

This book constitutes the refereed proceedings of the 33rd International Conference on Databases Theory and Applications, ADC 2022, held in Sydney, Australia, in September 2022. The conference is co-located with the 48th International Conference on Very Large Data Bases, VLDB 2022. The 9 full papers presented together with 8 short papers were carefully reviewed and selected from 36 submissions. ADC focuses on database systems, data-driven applications, and data analytics.

Handbook of Neuroengineering

Handbook of Neuroengineering
Author: Nitish V. Thakor
Publisher: Springer Nature
Total Pages: 3686
Release: 2023-02-02
Genre: Technology & Engineering
ISBN: 9811655405

This Handbook serves as an authoritative reference book in the field of Neuroengineering. Neuroengineering is a very exciting field that is rapidly getting established as core subject matter for research and education. The Neuroengineering field has also produced an impressive array of industry products and clinical applications. It also serves as a reference book for graduate students, research scholars and teachers. Selected sections or a compendium of chapters may be used as “reference book” for a one or two semester graduate course in Biomedical Engineering. Some academicians will construct a “textbook” out of selected sections or chapters. The Handbook is also meant as a state-of-the-art volume for researchers. Due to its comprehensive coverage, researchers in one field covered by a certain section of the Handbook would find other sections valuable sources of cross-reference for information and fertilization of interdisciplinary ideas. Industry researchers as well as clinicians using neurotechnologies will find the Handbook a single source for foundation and state-of-the-art applications in the field of Neuroengineering. Regulatory agencies, entrepreneurs, investors and legal experts can use the Handbook as a reference for their professional work as well.​