Edgeworth Expansions For Bootstrapping Regression Models
Download Edgeworth Expansions For Bootstrapping Regression Models full books in PDF, epub, and Kindle. Read online free Edgeworth Expansions For Bootstrapping Regression Models ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
The Bootstrap and Edgeworth Expansion
Author | : Peter Hall |
Publisher | : Springer Science & Business Media |
Total Pages | : 359 |
Release | : 2013-12-01 |
Genre | : Mathematics |
ISBN | : 146124384X |
This monograph addresses two quite different topics, each being able to shed light on the other. Firstly, it lays the foundation for a particular view of the bootstrap. Secondly, it gives an account of Edgeworth expansion. The first two chapters deal with the bootstrap and Edgeworth expansion respectively, while chapters 3 and 4 bring these two themes together, using Edgeworth expansion to explore and develop the properties of the bootstrap. The book is aimed at graduate level for those with some exposure to the methods of theoretical statistics. However, technical details are delayed until the last chapter such that mathematically able readers without knowledge of the rigorous theory of probability will have no trouble understanding most of the book.
Bootstrap Tests for Regression Models
Author | : L. Godfrey |
Publisher | : Springer |
Total Pages | : 342 |
Release | : 2009-07-29 |
Genre | : Business & Economics |
ISBN | : 0230233732 |
An accessible discussion examining computationally-intensive techniques and bootstrap methods, providing ways to improve the finite-sample performance of well-known asymptotic tests for regression models. This book uses the linear regression model as a framework for introducing simulation-based tests to help perform econometric analyses.
Bootstrap Methods
Author | : Michael R. Chernick |
Publisher | : John Wiley & Sons |
Total Pages | : 337 |
Release | : 2011-09-23 |
Genre | : Mathematics |
ISBN | : 1118211596 |
A practical and accessible introduction to the bootstrap method——newly revised and updated Over the past decade, the application of bootstrap methods to new areas of study has expanded, resulting in theoretical and applied advances across various fields. Bootstrap Methods, Second Edition is a highly approachable guide to the multidisciplinary, real-world uses of bootstrapping and is ideal for readers who have a professional interest in its methods, but are without an advanced background in mathematics. Updated to reflect current techniques and the most up-to-date work on the topic, the Second Edition features: The addition of a second, extended bibliography devoted solely to publications from 1999–2007, which is a valuable collection of references on the latest research in the field A discussion of the new areas of applicability for bootstrap methods, including use in the pharmaceutical industry for estimating individual and population bioequivalence in clinical trials A revised chapter on when and why bootstrap fails and remedies for overcoming these drawbacks Added coverage on regression, censored data applications, P-value adjustment, ratio estimators, and missing data New examples and illustrations as well as extensive historical notes at the end of each chapter With a strong focus on application, detailed explanations of methodology, and complete coverage of modern developments in the field, Bootstrap Methods, Second Edition is an indispensable reference for applied statisticians, engineers, scientists, clinicians, and other practitioners who regularly use statistical methods in research. It is also suitable as a supplementary text for courses in statistics and resampling methods at the upper-undergraduate and graduate levels.
The Jackknife and Bootstrap
Author | : Jun Shao |
Publisher | : Springer Science & Business Media |
Total Pages | : 533 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461207959 |
The jackknife and bootstrap are the most popular data-resampling meth ods used in statistical analysis. The resampling methods replace theoreti cal derivations required in applying traditional methods (such as substitu tion and linearization) in statistical analysis by repeatedly resampling the original data and making inferences from the resamples. Because of the availability of inexpensive and fast computing, these computer-intensive methods have caught on very rapidly in recent years and are particularly appreciated by applied statisticians. The primary aims of this book are (1) to provide a systematic introduction to the theory of the jackknife, the bootstrap, and other resampling methods developed in the last twenty years; (2) to provide a guide for applied statisticians: practitioners often use (or misuse) the resampling methods in situations where no theoretical confirmation has been made; and (3) to stimulate the use of the jackknife and bootstrap and further devel opments of the resampling methods. The theoretical properties of the jackknife and bootstrap methods are studied in this book in an asymptotic framework. Theorems are illustrated by examples. Finite sample properties of the jackknife and bootstrap are mostly investigated by examples and/or empirical simulation studies. In addition to the theory for the jackknife and bootstrap methods in problems with independent and identically distributed (Li.d.) data, we try to cover, as much as we can, the applications of the jackknife and bootstrap in various complicated non-Li.d. data problems.
An Introduction to Bootstrap Methods with Applications to R
Author | : Michael R. Chernick |
Publisher | : John Wiley & Sons |
Total Pages | : 318 |
Release | : 2014-08-21 |
Genre | : Mathematics |
ISBN | : 1118625412 |
A comprehensive introduction to bootstrap methods in the R programming environment Bootstrap methods provide a powerful approach to statistical data analysis, as they have more general applications than standard parametric methods. An Introduction to Bootstrap Methods with Applications to R explores the practicality of this approach and successfully utilizes R to illustrate applications for the bootstrap and other resampling methods. This book provides a modern introduction to bootstrap methods for readers who do not have an extensive background in advanced mathematics. Emphasis throughout is on the use of bootstrap methods as an exploratory tool, including its value in variable selection and other modeling environments. The authors begin with a description of bootstrap methods and its relationship to other resampling methods, along with an overview of the wide variety of applications of the approach. Subsequent chapters offer coverage of improved confidence set estimation, estimation of error rates in discriminant analysis, and applications to a wide variety of hypothesis testing and estimation problems, including pharmaceutical, genomics, and economics. To inform readers on the limitations of the method, the book also exhibits counterexamples to the consistency of bootstrap methods. An introduction to R programming provides the needed preparation to work with the numerous exercises and applications presented throughout the book. A related website houses the book's R subroutines, and an extensive listing of references provides resources for further study. Discussing the topic at a remarkably practical and accessible level, An Introduction to Bootstrap Methods with Applications to R is an excellent book for introductory courses on bootstrap and resampling methods at the upper-undergraduate and graduate levels. It also serves as an insightful reference for practitioners working with data in engineering, medicine, and the social sciences who would like to acquire a basic understanding of bootstrap methods.
The New Palgrave Dictionary of Economics
Author | : |
Publisher | : Springer |
Total Pages | : 7493 |
Release | : 2016-05-18 |
Genre | : Law |
ISBN | : 1349588024 |
The award-winning The New Palgrave Dictionary of Economics, 2nd edition is now available as a dynamic online resource. Consisting of over 1,900 articles written by leading figures in the field including Nobel prize winners, this is the definitive scholarly reference work for a new generation of economists. Regularly updated! This product is a subscription based product.
Spatial Econometrics: Spatial Autoregressive Models
Author | : Lung-fei Lee |
Publisher | : World Scientific |
Total Pages | : 894 |
Release | : 2023-10-16 |
Genre | : Business & Economics |
ISBN | : 9811270503 |
This is the most recently developed book in Spatial Econometrics which cover important models and estimation methods. Its coverage is rather broad, and some of the topics covered have only been developed in the recent econometric literature in spatial econometrics.The book summarizes our devoted efforts on spatial econometrics that represent joint contributions with former PhD advisees from the Ohio State University in Columbus, Ohio, USA.The coverage is comprehensive and there are a total of sixteen chapters from basic statistics and statistical theory of linear-quadratic forms, law of large numbers (LLN) and central limit theory (CLT) on martingales to nonlinear spatial mixing and spatial near-epoch dependence theories, which can justify the statistic inferences for various spatial models and their estimation. New estimation and testing approaches in empirical likelihood and general empirical likelihood, and Bootstrapping are presented. Model selection is also discussed in this book. In addition to the popular spatial autoregressive models, there are chapters on multivariate SAR models, simultaneous SAR models, and panel dynamic spatial models. Recent econometric developments on intertemporal spatial models with rational expectations and flows data in trade theory will also be included. In terms of statistics, classical estimation, testing and inference are the main concerns, and we provide classical inference for the justification of Bayesian simulation approaches.
Smoothing and Regression
Author | : Michael G. Schimek |
Publisher | : John Wiley & Sons |
Total Pages | : 682 |
Release | : 2013-05-29 |
Genre | : Mathematics |
ISBN | : 1118763300 |
A comprehensive introduction to a wide variety of univariate and multivariate smoothing techniques for regression Smoothing and Regression: Approaches, Computation, and Application bridges the many gaps that exist among competing univariate and multivariate smoothing techniques. It introduces, describes, and in some cases compares a large number of the latest and most advanced techniques for regression modeling. Unlike many other volumes on this topic, which are highly technical and specialized, this book discusses all methods in light of both computational efficiency and their applicability for real data analysis. Using examples of applications from the biosciences, environmental sciences, engineering, and economics, as well as medical research and marketing, this volume addresses the theory, computation, and application of each approach. A number of the techniques discussed, such as smoothing under shape restrictions or of dependent data, are presented for the first time in book form. Special features of this book include: * Comprehensive coverage of smoothing and regression with software hints and applications from a wide variety of disciplines * A unified, easy-to-follow format * Contributions from more than 25 leading researchers from around the world * More than 150 illustrations also covering new graphical techniques important for exploratory data analysis and visualization of high-dimensional problems * Extensive end-of-chapter references For professionals and aspiring professionals in statistics, applied mathematics, computer science, and econometrics, as well as for researchers in the applied and social sciences, Smoothing and Regression is a unique and important new resource destined to become one the most frequently consulted references in the field.
When Does Bootstrap Work?
Author | : Enno Mammen |
Publisher | : Springer Science & Business Media |
Total Pages | : 205 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461229502 |